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ABSTRACT 

In accordance with SDG 13 which focuses on climate action, this study explores how digital technologies 
and emerging workforce competencies can support the transition toward a carbon-neutral economy. The 
research focused on developing and validating a measurement instrument specifically for the Saudi context. 
A pilot survey with 30 participants assessed item clarity and dimensionality using exploratory factor analysis 
in SPSS 31, identifying three key components. The main study collected 205 responses through stratified 
random sampling, and confirmatory factor analysis in Amos 26 confirmed the reliability and validity of the 
measurement model. The results demonstrate that the instrument effectively captures the relationships 
between digital technology adoption, workforce competencies, and carbon-neutral initiatives. By providing 
one of the first validated tools for Saudi Arabia, this study offers a foundation for future research and 
practical applications across industries, supporting strategies for sustainable development and economic 
transformation in line with national and global climate objectives. 
 
Keywords: Carbon neutrality, confirmatory factor analysis, digital transformation, exploratory factor 
analysis, measurement model, SDG,  sustainable development goals 
 
 

INTRODUCTION 

Saudi Arabia’s pursuit of carbon neutrality under Vision 2030 has positioned both digital technologies (DT) 
and emerging workforce competencies (EWC) as critical enablers of sustainable transformation. Prior research 
demonstrates that DT, including smart grids (SG), artificial intelligence (AI) driven energy management, internet 
of things (IoT) monitoring systems, blockchain technology (BT) for carbon tracking, and cloud computing (CC), 
provide measurable mechanisms for reducing emissions, enhancing efficiency, and restructuring industrial 
processes (Negueroles et al., 2024). Concurrently, EWC encompassing education, technical expertise, 
entrepreneurship, and innovation have been shown to strengthen organizational and national capacity for 
sustainability by fostering innovation driven practices and low-carbon solutions (Alkofahi et al., 2024). 

 Despite this potential, empirical studies highlight persistent gaps. Challenges include limited digital 
adoption in sustainability oriented sectors, inadequate interoperability of digital systems across energy, transport, 
and manufacturing, as well as skill deficiencies among youth in areas such as renewable energy software, AI enabled 
emissions tracking, and circular economy solutions (Negueroles et al., 2024). Furthermore, regulatory frameworks 
for digital climate solutions remain underdeveloped (Mougayar & Buterin, 2016), and structural barriers such as 
insufficient investment, weak public private collaboration, and restricted funding access for green entrepreneurship 
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constrain progress. While flagship projects like NEOM integrate advanced digital sustainability solutions, their 
diffusion across industries remains limited. 

The Kingdom’s educational reforms and government led initiatives have enhanced STEM (Science, 
Technology, Engineering, and Mathematics) engagement and fostered youth participation in sustainability driven 
innovation. However, critical structural barriers, such as the digital divide, fragmented regulatory support, and lack 
of targeted training continue to restrict the integration of EWC and DT in advancing carbon neutrality. This 
underscores the need to conceptualize and empirically validate EWC and DT as measurable constructs that 
function as enablers of a carbon-neutral economy (CNE). Although prior research highlights the importance of 
workforce competencies and digital technologies in advancing carbon neutrality, limited effort has been made to 
empirically operationalize these constructs or validate their measurement within the Saudi context. To address this 
gap, the present study adopts a two stage measurement approach: first, exploratory factor analysis (EFA) is 
employed to uncover the underlying dimensions of EWC, DT, and the CNE. Second, CFA is conducted to assess 
construct validity, reliability, and overall model fit. Accordingly, the study is intending to address the following 
research questions: 

1. What underlying dimensions of DT, EWC, and CNE can be identified through EFA? 
2. How effectively can CFA validate the reliability and model fit of these constructs? 
 
This study adopts a research approach to design and validate a measurement model that bridges DT and EWC 

in advancing a CNE. This research study integrates insights across different fields, such as digital, human resource 
management, and environmental sustainability with cross-cutting impacts on economic and social dimensions by 
incorporating the perspectives of industrial practitioners and policymakers. This integration ensures that the 
proposed model is not only theoretically rigorous but also practically relevant to the Saudi Vision 2030 sustainability 
agenda and global climate action goals. This process underscores the essence of multidisciplinary research by 
generating knowledge that transcends disciplinary boundaries and is directly applicable to real-world challenges 
such as climate change and economic transformation. 

LITERATURE REVIEW 

Theoretical Background and Measurement of Constructs 

DT have emerged as pivotal enablers in advancing a CNE, offering measurable mechanisms for sustainability. 
Contemporary DT such as artificial intelligence (AI), machine learning (ML), blockchain technology (BT), Internet 
of Things (IoT), cloud computing (CC), and big data analytics facilitate efficiency, energy optimization, and low-
carbon innovations across multiple sectors (Negueroles et al., 2024). These technologies provide measurable 
outputs such as improved energy efficiency, carbon emissions tracking, renewable energy integration, and 
enhanced operational performance (Dwivedi et al., 2022. For example, BT based monitoring, reporting, and 
verification (MRV) enables transparent carbon credit management and supports circular carbon economy practices 
(Ecklu & Thomas, 2025). IoT facilitates real-time data collection and optimization in manufacturing, transport, 
and smart city applications, while CC and AI allow predictive energy management, system integration, and 
decision-making for sustainable urban and industrial operations (Cao et al., 2022; Zhu et al., 2022). 

EWC are equally critical, encompassing education and skill development (ESD), entrepreneurship and 
innovation (EI), employment opportunities (EO), global competitiveness (GC), and social and economic equity 
(SEI) (DiMaggio & Hargittai, 2023; Schwab & Zahidi, 2020; Nambisan, 2017). These constructs can be 
operationalized through measurable indicators such as digital literacy, technical expertise in renewable energy and 
AI applications, entrepreneurial engagement, participation in global digital platforms, and equitable access to 
technology (Huisman, 2021; Qureshi, 2020). Similarly, the CNE can be measured through outcomes related to 
renewable energy adoption, energy efficiency, circular carbon economy implementation, green innovation 
technology, and policy and awareness support (Hafeez et al., 2025; Liu, et al., 2022; Yi, et al., 2024; Mirza et al., 
2024; Hoque & Lee, 2025; Porwol et al., 2016; Macintosh, 2004). Prior research has developed initial frameworks 
for these constructs, yet empirical validation, particularly through factor analysis approaches, remains limited. Most 
studies focus on isolated dimensions either DT adoption or workforce skills without systematically measuring their 
combined contribution to CNE or testing the reliability and validity of measurement items across multiple 
constructs (Aziz et al., 2024; Khan et al., 2022). 

Saudi Arabia’s Vision 2030 underscores the central role of both EWC and DT as enablers of a CNE, yet 
empirical measurement of these constructs remains limited. While conceptual linkages are well established, 
measurement focused research using validated scales, indicators, and factor-analytic methods is scarce. Most 
studies treat DT adoption as a uni-dimensional construct measured through self-reported adoption or frequency 
indices, limiting cross-study comparability and construct validation (Dwivedi et al., 2022; Matos et al., 2022). 
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Operationalization of Digital Technologies 

Studies employing factor-analytic methods to operationalize DT constructs are emerging but limited. For 
instance, AI, IoT, and BT have been assessed through multi-item Likert scales capturing adoption, technical 
competence, and system integration (Cao et al., 2022; Lee et al., 2022). Principal component analysis (PCA) and 
EFA have been used to identify latent dimensions such as process automation, predictive analytics, and smart 
monitoring (Zhu et al., 2022). Blockchain, for example, is frequently operationalized through indicators such as 
transaction transparency, carbon credit tracking, and MRV (measurement, reporting, verification) capabilities 
(Ecklu & Thomas, 2025; Frank et al., 2025). Cloud computing constructs are measured via scalability, accessibility, 
and energy efficiency indicators (Da Silva et al., 2023), while AI-enabled energy management is operationalized 
through predictive accuracy, system integration, and real-time decision support (Allal-Chérif et al., 2021; Luqman 
et al., 2024). Despite these examples, few studies have integrated multiple DT dimensions under a unified 
measurement framework relevant to sustainability transitions. 

Operationalization of Emerging Workforce Competencies 

The emerging workforce is critical for operationalizing digital sustainability initiatives. Constructs such as 
education and skill development (ESD), employment opportunities (EO), entrepreneurship and innovation (EI), 
global competitiveness (GC), and social and economic equity (SEI) are frequently cited (DiMaggio & Hargittai, 
2023; Nambisan, 2017; Schwab & Zahidi, 2020). Measurement approaches often rely on self-assessment scales, 
competence inventories, or institutional proxies (e.g., STEM enrollment, digital literacy rates) (Helsper & van 
Deursen, 2017; Huisman, 2021). Factor-analytic studies using PCA or EFA have been applied to validate latent 
EWC dimensions, such as combining technical, entrepreneurial, and innovation capabilities into higher-order 
factors (Gonzales, 2016; Qureshi, 2020). CFA has occasionally been employed to confirm reliability and factorial 
validity, though integration with DT constructs remains rare. 

Operationalization of Carbon-Neutral Economy  

CNE related constructs include renewable energy adoption (REA), energy efficiency and conservation (EEC), 
circular carbon economy (CCE), green innovation technology (GIT), and policy and awareness support (PAS)  
(Hafeez et al., 2025; Liu et al., 2022). Measurement scales are typically derived from environmental performance 
indicators, energy consumption metrics, and survey-based assessments of green innovation adoption (Dzwigol et 
al., 2024). Few studies have validated these scales using PCA, EFA, or CFA, particularly in the context of 
integrating human capital and digital adoption as enablers of sustainability transitions (El Zein & Gebresenbet, 
2024). 

 Although DT and EWC are increasingly recognized as key drivers of carbon neutrality, several critical 
gaps remain in the literature. While conceptual frameworks suggest that technologies such as AI, IoT, BT and CC 
can reduce emissions and enhance sustainability, empirical evidence quantifying their specific contributions in 
national contexts like Saudi Arabia is limited (Matos et al., 2022). Similarly, research on EWC tends to be largely 
qualitative, often lacking operationalized constructs and measurable indicators for skills such as digital proficiency, 
entrepreneurship, and inclusive workforce participation. Moreover, the interaction between DT adoption and 
workforce competencies in supporting a CNE remains underexplored, leaving the combined effects of technology 
and talent largely unexamined (Lee et al., 2024).  

 Existing measurement approaches also exhibit notable limitations. Psychometrically validated instruments 
that capture DT, EWC, and CNE collectively are scarce, resulting in fragmented assessments that examine these 
constructs in isolation. While techniques such as PCA, EFA and CFA have been applied to individual constructs, 
few studies employ an integrated approach to develop and validate comprehensive measurement models. 
Contextual factors, including Saudi Arabia’s evolving workforce, ICT adoption patterns, and national carbon-
neutral initiatives, are frequently overlooked, limiting the applicability and generalizability of prior findings 
(Dwivedi et al., 2022). These gaps underscore the need for research that establishes a unified, empirically validated 
framework to examine the interplay between DT and EWC in advancing a CNE. By adopting robust factor-analytic 
techniques such as EFA and CFA, such studies can operationalize key constructs, enhance comparability across 
research, and provide practical insights for policy formulation, workforce development, and strategic investment 
in digital infrastructure aimed at supporting sustainable transitions. 

 The below table 1, provides the structured table summarizing the constructs, indicators, scales, factor 
analytic methods, and measurement gaps identified from the literature. 

   
Table 1: Structured table with summary of constructs, indicator, measurement scale and gaps 

Construct 
Sub-Dimensions 
/ Indicators 

Measurement 
Scale / Method 

Factor-
Analytic 
Approach 

Key 
Measurement 
Gaps 
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Digital 
Technologies 
(DT) 

AI/ML: predictive 
accuracy, energy 
management, 
optimization, 
smart decision-
making 

Multi-item Likert 
scales, system 
performance logs 

EFA/PCA 
to identify 
latent factors; 
limited CFA 
(Allal-Chérif 
et al., 2021; 
Lee et al., 
2022) 

Mostly 
technical 
measures; rarely 
integrated with 
workforce and 
sustainability; 
limited 
validated scales 

IoT: real-time 
monitoring, 
emissions tracking, 
smart cities, 
climate-smart 
agriculture, 
Internet of 
Vehicles (IoV) 

Likert scales, 
sensor/usage data 

EFA/PCA 
(Akpakwu et 
al., 2018; 
Mishra et al., 
2019); CFA 
limited 

Measures often 
isolated; 
integration with 
DT or EWC 
constructs 
limited 

Blockchain 
Technology (BT): 
carbon credit 
tracking, MRV, 
transparency, 
decarbonization 
investment 
support 

Likert scales, 
adoption indices 

EFA (Ecklu 
& Thomas, 
2025; Frank 
et al., 2025); 
CFA rarely 
applied 

Context-
specific; rarely 
integrated with 
workforce 
competencies 
and 
sustainability 
outcomes 

Cloud Computing 
(CC): scalability, 
resource 
efficiency, energy 
optimization, 
service 
accessibility 

Likert scales, 
usage/performance 
logs 

EFA (Da 
Silva et al., 
2023; Q. 
Zhang et al., 
2023); CFA 
sparse 

Limited cross-
sector 
validation; 
rarely linked 
with EWC or 
CNE 

Cybersecurity 
(CS): energy-
proportional 
operations, secure 
digital 
infrastructure 

Surveys, technical 
assessment 

EFA/PCA 
used 
occasionally 
(Pan et al., 
2015) 

Rarely 
integrated with 
DT or CNE; 
empirical 
validation 
limited 

Emerging 
Workforce 
Competencies 
(EWC) 

Education & Skill 
Development 
(ESD): STEM 
education, digital 
literacy, technical 
expertise 

Self-assessment 
scales, competence 
inventories, 
institutional proxies 

EFA/PCA 
to identify 
latent 
dimensions 
(DiMaggio & 
Hargittai, 
2023; 
Huisman, 
2021); CFA 
occasionally 
applied 

Few validated 
scales; 
integration with 
DT and CNE 
constructs 
minimal 

Employment 
Opportunities 
(EO): digital job 
access, online 
recruitment, gig 
economy 
participation 

Surveys, 
employment data 
proxies 

EFA (Lutz, 
2019; 
Gonzales, 
2016); CFA 
limited 

Largely 
perception-
based; few 
cross-sector 
studies 
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Entrepreneurship 
& Innovation (EI): 
startup growth, 
innovation 
adoption, market 
access, venture 
capital acquisition 

Multi-item Likert 
scales, startup 
performance 
metrics 

EFA 
(Nambisan, 
2017; 
Qureshi, 
2020); CFA 
rarely applied 

Rarely 
integrated with 
DT; limited 
longitudinal 
validation 

Global 
Competitiveness 
(GC): digital 
proficiency, 
international 
competitiveness, 
workforce 
productivity 

Survey indices, 
national statistics 

PCA/EFA 
occasionally 
(Schwab & 
Zahidi, 2020) 

Few empirical 
validations at 
individual and 
organizational 
level 

Social & 
Economic 
Inequality (SEI): 
digital inclusion, 
access to 
resources, income 
equality 

Surveys, 
socioeconomic 
indicators 

PCA/EFA 
used in social 
studies 
(Helsper & 
van Deursen, 
2017) 

Measurement 
rarely linked to 
sustainability 
outcomes; 
integration with 
DT and CNE 
limited 

Carbon-
Neutral 
Economy 
(CNE) 

Renewable Energy 
Adoption (REA): 
solar, wind, 
biomass adoption, 
smart grid 
integration 

Energy usage 
metrics, survey 
items 

PCA/EFA 
to extract 
latent factors 
(Hafeez et al., 
2025; Yi et 
al., 2024) 

Rare integration 
with DT and 
workforce 
measures; few 
validated multi-
dimensional 
scales 

Energy Efficiency 
& Conservation 
(EEC): energy 
reduction, building 
efficiency, 
consumption 
monitoring 

Energy data, Likert-
type surveys 

EFA/PCA 
(Zahid et al., 
2025; Mirza 
et al., 2024) 

Fragmented; 
few studies 
combine with 
DT or EWC 

Circular Carbon 
Economy (CCE): 
recycling, reuse, 
refabrication, 
digital monitoring 

Surveys, process 
metrics 

EFA (Khan, 
2022; Liu et 
al., 2022); 
CFA rarely 

Few validated 
scales 
integrating DT 
and EWC 

Green Innovation 
Technology (GIT): 
green R&D, low-
carbon 
technologies, 
innovation 
diffusion 

Survey and 
performance 
indicators 

PCA/EFA 
for latent 
factors (Guo 
et al., 2025; 
Hoque & 
Lee, 2025) 

Mostly firm-
level; rarely 
linked to 
workforce or 
DT adoption 

Policy & 
Awareness 
Support (PAS): e-
participation, 
government 
support, citizen 
engagement 

Likert surveys, 
policy indices 

EFA/PCA in 
governance 
studies 
(Porwol et 
al., 2016; 
Macintosh, 
2004) 

Limited cross-
sector and 
integrated 
measurement 
with DT/EWC 
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METHODOLOGY 

The study used quantitative approach and collected research data using a survey questionnaire. The survey 
instrument was developed from the literature based on the identification of potential enablers of DT and EWC 
that will contribute for CNE. The data analysis conducted EFA to examine the underlying factor’s structure and 
CFA to statistically validate the measurement model. 

Data Collection Process and Survey Instrument 

The study used stratified purposive sampling with expert criteria and collected data from 205 upper 
management employees who have better knowledge in terms of DT adoption and have sustainable initiatives on 
carbon reduction in Riyadh, Jeddah and Damam regions of Saudi Arabia. The survey was designed to capture 
perceptions on technology awareness, workforce proficiency, relevance for carbon reduction, and regulatory 
factors. The survey was developed using constructs from prior studies and mapped to relevant content. Example 
questions on AIML, BT, CC, IoT, and CS were grouped under DT, while items on education and skill 
development, employment opportunities, entrepreneurship and innovation, global competitiveness, and social-
economic inequality were captured under workforce development. Factors related to renewable energy, energy 
efficiency, circular carbon practices, green innovation, and policy support were assigned to carbon-neutral 
initiatives. The participants were chosen from energy and utilities; manufacturing, logistic and transportation, 
construction and digital service provider sectors as they contribute in large scale projects in Vision 2030 requiring 
sustainable design. Further, CFA was conducted to validate the constructs’ dimensionality and reliability, 
confirming their appropriateness for inclusion in the structural model. 

Measurement Items 

All the constructs and the measurement items used in the study were well discussed theoretically in the 
literature. However, as this area of study is still nascent and emerging, the items of the constructs were checked 
for their reliability and validity. The study identified three constructs namely DT, EWC and CN. A focused 
literature review on these three constructs formed the basis for identified enabling factors. These constructs were 
further refined through consultations with industry experts from energy and utilities; manufacturing; logistics and 
transportation; construction; and digital services to ensure contextual relevance. A pilot test with 30 participants 
was then conducted to check clarity and remove any redundancies. The industry experts rated their agreement with 
statements on the identified enablers using a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree).  

(1) DT: The DT towards CN were measured by five items namely BT (Ecklu and Thomas, 2025; Frank et al., 
2025); IoT integration Akpakwu et al., 2017; Mishra et al., 2019).The use of CC (Da Silva et al., 2023; Zhu et al., 
2022). AIML adoption (Allal-Chérif et al., 2021; Cao et al., 2022; Lee et al., 2022; Luqman et al., 2024) and CS 
measures (Pan et al., 2015).Example statements used "To what extent do you agree that BT enhances transparency, 
efficiency, and traceability in carbon management and sustainable supply chains?"; "To what extent do you agree 
that IoT enables real-time monitoring and optimization of energy and resource usage, contributing to a CNE?"; 
"To what extent do you agree that AI and ML improve decision-making, predict energy demands, and optimize 
processes to reduce carbon emissions?"; "To what extent do you agree that robust CS ensures the safe 
implementation of DT and protects sustainability related data?"; "To what extent do you agree that CC enhances 
data management, collaboration, and operational efficiency, thereby supporting carbon-neutral initiatives?" 

(2) EWC: This construct is measured by five items, ESD (Choi et al., 2020; DiMaggio and Hargittai, 2023; 
Helsper and van Deursen, 2017; Huisman, 2021); EO (Gonzales, 2016; in, 2019); EI (Nambisan, 2017; Qureshi, 
2020) GC (Hilbert, 2016; Schwab and Zahidi, 2020) and SEI (Huisman, 2021). Example statements used "The 
development of youth education and digital skills enhances the effectiveness of DT in achieving carbon-neutral 
goals."; "Greater EO for youth strengthen the impact of DT on organizations’ sustainability and carbon reduction 
efforts."; "Youth-driven EI amplify the contribution of DT toward a carbon-neutral economy."; "Skilled youth 
help organizations leverage DT to improve GC while pursuing carbon-neutral initiatives."; "Addressing SEI among 
youth increases the effectiveness of DT in achieving sustainable and carbon-neutral outcomes." 

(3) CNE: The construct is measured by five items, REA (Hafeez et al., 2025; Khan et al., 2022); EEC (Dzwigol 
et al., 2024; Mirza et al., 2024; Soares et al., 2021; Zahid et al., 2025); CCE practices (Khan, 2022; Liu et al., 2022); 
GIT (Hoque and Lee, 2025) and PAS (Porwol et al., 2016). Example statements used “DT (e.g., IoT, AI, 
blockchain) accelerate the integration and adoption of renewable energy solutions.”; “Smart digital tools (such as 
AI, IoT, and mobile apps) help optimize energy use and promote conservation practices.”; “DT enhance the 
effectiveness of reuse, recycling, and carbon capture initiatives.”; “Digital transformation fosters GIT that reduce 
carbon emissions.”; “Digital platforms and e-governance increase public awareness and policy support for 
achieving carbon neutrality.” 
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RESULTS and DISCUSSION  

This study utilized the Statistical Package for the Social Sciences (SPSS) version 31 for EFA and Amos 26 for 
CFA. Table 1 presents the demographic characteristics of the participants. The majority are non-Saudi male, 
predominantly within the age group of 31 to 40, and directly employed in their respective firms. Most hold a 
bachelor’s degree, with service-based organizations placing greater emphasis on carbon neutral initiatives through 
the adoption of DT. 

 
Table 1: Profile of responding firms. 

Variable Categories Frequency % 

Age  

Below 20 26 12.68 

21-30 41 20.00 

31-40 64 31.22 

41-50 46 22.44 

Above 50 28 13.66 

Gender 
Male 148 72.20 

Female 57 27.80 

Nationality 
Saudi 81 39.51 

Non-Saudi 124 60.48 

Education 
Level 

High School 6 2.93 

Bachelor 92 44.88 

Master 80 39.02 

Ph.D. 27 13.17 

Type of the 
firm 

Product based 60 29.27 

Service based 145 70.73 

Current 
Occupation / 
Role 

Employee 74 36.10 

Consultant 52 25.37 

Entrepreneur 41 20.00 

Researcher 38 18.54 

Exploratory Factor Analysis 

EFA encompasses a set of statistical techniques designed to represent a large group of observed variables 
through a smaller number of latent constructs (Kim & Mueller, 1978). Its primary goal is to reduce dimensionality 
by clustering variables that exhibit high intercorrelations into distinct factors Tabachnick and Fidell, 2002). Within 
EFA, PCA is the most commonly applied method as a data reduction technique for continuous variables, 
identifying dominant patterns in the dataset through component scores and loading structures (Wold et al., 1987). 
In this study, PCA with varimax rotation was employed with fifteen measurement items to explore the factors 
contributing to the study. The item-total correlations ranged between 0.30 and 0.801, with all item validity 
coefficients exceeding the threshold of 0.30. As suggested by Tabachnick and Fidell, 2002, the analysis 
incorporated Kaiser-Meyer-Olkin (KMO) higher than 0.5, which resulted in 0.894 and Bartlett’s test of sphericity 
is significant (4295.918; p < 0.001) and assessed the sampling adequacy and factorability conditions, scree plots, 
factor loadings, and total variance explained to determine the robustness of the factor structure. Components with 
eigenvalues exceeding 1 and variables with factor loadings above 0.5 were retained, with all items demonstrating 
loadings greater than 0.5 on their respective constructs ranging from 0.824 to 0.928. Table 2 demonstrates the 
PCA results and screen plot in figure 1. The items were also checked for any possible cross loadings to avoid 
problems in construct validity and measurement ambiguity in further analysis. 

 
Table 2: Rotated Component Matrix. 

Item 
Statement 
 

Component 

1 2 3 

BT 
I agree that blockchain technology enhances 

transparency, efficiency, and traceability in carbon 
management and sustainable supply chains. 

0.909     
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IoT 
I agree that IoT enables real-time monitoring 

and optimization of energy and resource usage, 
contributing to a carbon-neutral economy. 

0.928   

CC 

I consider that cloud computing enhances data 
management, collaboration, and operational 
efficiency, thereby supporting carbon-neutral 
initiatives. 

0.898   

AIML 
I believe that AI and ML improve decision-

making, predict energy demands, and optimize 
processes to reduce carbon emissions. 

0.923   

CS 
I agree that robust cybersecurity ensures the safe 

implementation of digital technologies and protects 
sustainability related data. 

0.893   

ESD 
I believe the development of youth education 

and digital skills enhances the effectiveness of digital 
technologies in achieving carbon-neutral goals. 

 0.844  

EO 

I understand greater employment opportunities 
for youth strengthen the impact of digital 
technologies on organizations’ sustainability and 
carbon reduction efforts. 

 0.890  

EI 
I agree youth-driven entrepreneurship and 

innovation amplify the contribution of digital 
technologies toward a carbon-neutral economy. 

 0.895  

GC 

I trust skilled youth help organizations leverage 
digital technologies to improve global 
competitiveness while pursuing carbon-neutral 
initiatives. 

 0.897  

SEI 

I agree addressing social and economic 
inequalities among youth increases the effectiveness 
of digital technologies in achieving sustainable and 
carbon-neutral outcomes. 

 0.908  

REA 
I agree digital technologies accelerate the 

integration and adoption of renewable energy 
solutions. 

  0.850 

EEC 
I believe smart digital tools help optimize energy 

use and promote conservation practices. 
  0.824 

CCE 
I trust digital technologies enhance the 

effectiveness of reuse, recycling, and carbon capture 
initiatives. 

  0.883 

GIT 
I believe digital transformation fosters green 

innovations and technologies that reduce carbon 
emissions. 

  0.892 

PAS 
I understand digital platforms and e-governance 

increase public awareness and policy support for 
achieving carbon neutrality. 

  0.902 

Initial 
eigenvalues 

 
7.699 3.755 1.590 

% of 
Variance 

 
51.326 25.003 10.603 

Cumulative 
% 

 
51.326 76.359 86.962 

Source: SPSS analysis of primary data. 
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Figure 1: Factor graph for eigen values 

Confirmatory Factor Analysis 

CFA was conducted using AMOS version 26. The measurement model demonstrated strong construct 
reliability, as indicated by composite reliability (CR) values ranging from 0.940 to 0.960, exceeding the 
recommended threshold of 0.70 (Nunnally J.C, 1978), as presented in Table 3. The average variance extracted 
(AVE), which represents the proportion of variance captured by a construct relative to measurement error, ranged 
from 0.701 to 0.927, surpassing the 0.50 cutoff suggested by (Fornell and Larcker, 1981). As suggested by Bentler, 
1980, the statistically acceptable fit indices as shown in Table 4. The overall model exhibited a good fit across 
multiple indices: relative χ² = 2.790 (p < 0.001), GFI = 0.901, CFI = 0.964, RMSEA = 0.080, and SRMR = 0.035. 
Construct validity was further assessed through convergent and discriminant validity tests. Convergent validity was 
supported, with factor loadings of the indicators on their respective constructs ranging from 0.760 to 0.982, 
consistent with the recommendations of Gerbing and Anderson, 1988. Discriminant validity was confirmed by 
comparing the square root of the AVE for each latent variable with the correlations between constructs, ensuring 
that each construct was distinct from the others. 

 
Table 3: Reliability and Convergent Validity. 

Variable 
/  
Construct 

Item 
Standardized 

Factor Loading 
Cronba

ch Alpha 
C.R AVE 

DT 

BT 0.982 

0.985 
0.98

4 
0.927 

IoT 0.967 
CC 0.951 
AIM

L 
0.971 

CS 0.944 

EWC 

ESD 0.881 

0.972 
0.97

2 
0.874 

EO 0.914 
EI 0.937 
GC 0.966 
SEI 0.974 

CNE 

RE
A 

0.781 

0.921 
0.92

1 
0.701 

EE
C 

0.760 

CCE 0.863 

GIT 0.883 

PAS 0.891 

 
Table 4: Goodness of fit indexes for the factor structure of the scale items. 

Goodness of Fit Index 
Acceptable 

Limit 
Values 

Obtained 

X2/df 
<5 moderate 

fit 2.790 
<3 good fit 

Goodness of fit index  (GFI) >0.90 0.901 
Comparative fit index  (CFI) >0.90 0.964 
Normed fit index (NFI) >0.90 0.945 
Relative Fit Index (RFI) >0.85 0.934 
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Standardized Root Mean Square 
Residual (SRMR) 

< 0.08 0.035 

Root mean square error of 
approximation (RMSEA) 

< 0.08 0.080 

 
As shown in the figure 2, the CFA results indicate that BT (0.98), AIML (0.97), and IoT (0.97) exhibit very high 

standardized regression weights with the DT construct. Similarly, GC (0.97), SEI (0.97), and EI (0.94) revealed 
substantial loadings on the EWC latent construct, and PAS (0.89), GIT (0.88) are potential items of CNE. This 
demonstrates that these items strongly contribute and are reliable indicators of the latent construct.  

 
Figure 2: Measurement Model 
Table 5: Correlation of the constructs. 

 Relationship  Coefficient 

DT <--> EWC 0.658*** 

EWC <--> CNE 0.111* 

DT <--> CNE 0.049 

 
The findings indicate that mid-career professionals in service oriented firms, predominantly non-Saudi males 

with bachelor’s degrees, are actively engaging with DT to advance sustainability objectives. The high level of 
educational attainment suggests that organizations prioritize skilled personnel capable of leveraging DT to enhance 
operational efficiency and foster innovation, reflecting a strategic alignment between workforce capabilities and 
carbon-neutral initiatives. EFA confirmed three distinct but interrelated constructs DT, EWC, and CNE together 
explaining nearly 87% of the variance. CFA further validated the model, demonstrating high reliability and 
convergent validity, with strong factor loadings for key DT items (BT, AI & ML, IoT) and EWC items (GC, EI 
and SEI). As seen in table 5, the correlation results among the constructs between DT and EWC (r = 0.658, p < 
0.001) indicates that technological adoption significantly enhances workforce competencies. In contrast, the direct 
relationships between DT and CNE (r = 0.049, p < 0.05) and between EWC and CNE (r = 0.111, p < 0.05) were 
weak but significant, suggesting that additional organizational mechanisms mediate the translation of technology 
and skills into tangible carbon-neutral outcomes. These results emphasize that while DT and workforce 
competencies are critical enablers, achieving carbon neutrality requires a coordinated approach that integrates 
technology, human capital development, and organizational processes. Investing in digital skills and technological 
education is therefore essential to accelerate Saudi Arabia’s transition toward a carbon-neutral economy, promote 
sustainability, and support the broader objectives of Saudi Vision 2030. The findings align with prior studies 
highlighting the role of digitalization in circular economy practices and sustainable development (Alkofahi et al., 
2024). This study underscores the strategic importance of workforce competencies and digital innovation in 
bridging the gap between technological potential and sustainable impact. 
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RESEARCH LIMITATIONS 

While this study provides important insights, there are several limitations that should be considered. First, the 
sample was heavily skewed toward non-Saudi males aged 31–40, most of whom held bachelor’s degrees and 
worked in service-oriented organizations. This limits the generalizability of the findings to other demographic 
groups, including females, younger or older employees, individuals with different educational backgrounds, and 
those working in product based or smaller firms. Future research should aim for a more balanced and 
representative sample to better reflect the diversity of the Saudi workforce. Second, although rigorous statistical 
methods such as EFA and CFA were employed to validate the measurement model, the cross-sectional design of 
the study restricts the ability to establish causal relationships among DT, EWC and CNE outcomes. Longitudinal 
studies or experimental designs would provide a clearer understanding of how these factors interact and evolve 
over time. 

 Finally, this study relied primarily on quantitative, organizational level data, which may not fully capture 
the cultural, behavioral, or contextual factors that influence carbon-neutral initiatives. The relatively weak direct 
correlations observed between DT and CNE outcomes, as well as between EWC and CNE, suggest the potential 
influence of mediating or moderating variables that were not included in the analysis. Future research could 
incorporate qualitative approaches, or explore additional factors such as organizational culture, regulatory 
frameworks, or employee engagement to provide a more comprehensive understanding of the drivers behind 
carbon-neutral transitions in Saudi Arabia. 

CONCLUSION 

This study highlights the critical role of DT and EWC in supporting Saudi Arabia’s transition toward a CNE. 
While advanced technologies such as BT, AIML, IoT, CC and CS improve operational efficiency and promote 
sustainability initiatives, their direct impact on carbon-neutral outcomes appears limited. Instead, these 
technologies are most effective when combined with a skilled, competent workforce, emphasizing the importance 
of education, training, and innovation in converting technological adoption into tangible environmental benefits. 
The strong positive relationship between DT and EWC underscores the need for continued investment in digital 
skills and workforce development. By enhancing organizational capabilities, such investments can accelerate the 
implementation of carbon-neutral practices. Although the direct effects of workforce competencies and 
technology adoption on carbon neutrality were modest, they were statistically significant, indicating that broader 
organizational and systemic factors likely mediate these relationships. Moreover, the findings suggest that 
integrating advanced digital technologies with strategic human capital development is essential for improving 
energy efficiency, reducing carbon emissions, and achieving Saudi Arabia’s sustainability and economic 
diversification goals under Vision 2030. By promoting technological literacy and strengthening workforce 
competencies, organizations can harness digitalization to drive sustainable development while building long-term 
economic resilience. 

Conflicts of Interest: The author states that there are no known conflicts of interest associated with the 
publication of this article. 

Acknowledgment: The authors extend their appreciation to Prince Sattam Bin Abdulaziz University for funding 
this research work through the project number (PSAU/2025/02/32875). 

REFERENCES 

Akpakwu, G. A., Silva, B. J., Hancke, G. P., and Abu-Mahfouz, A. M., (2018). A Survey on 5G Networks for the 
Internet of Things: Communication Technologies and Challenges. IEEE Access, 6, 3619–3647. 
https://doi.org/10.1109/ACCESS.2017.2779844  

Alkofahi, K., Duran, I. A., and Saqib, N., (2024). Net-Zero Emissions Pathways in BRICS Economies: The Impact 
of Environmental Innovations, Policy, and Human Capital on Carbon Footprint Reduction. International 
Journal of Energy Economics and Policy, 14(6), 106–113. https://doi.org/10.32479/ijeep.17317  

Allal-Chérif, O., Simón-Moya, V., and Ballester, A. C. C., (2021). Intelligent purchasing: How artificial intelligence 
can redefine the purchasing function. Journal of Business Research, 124, 69–76. 
https://doi.org/10.1016/j.jbusres.2020.11.050  

Aziz, G., Strielkowski, W., Sarwar, S., and Tiwari, A. K., (2024). Implications of circular economy, digitalization 
and technological innovation to achieve sustainable environmental goal: Pre and post-vision 2030. Heliyon, 
10(10), e30978. https://doi.org/10.1016/j.heliyon.2024.e30978  

Bentler, P. M., (1980). Multivariate Analysis with Latent Variables: Causal Modeling. Annual Review of Psychology, 
31(1), 419–456. https://doi.org/10.1146/annurev.ps.31.020180.002223  



Khan. / A Measurement Model Bridging Digital Technologies 

832  © 2025 by Author/s 

Cao, Z., Zhou, X., Hu, H., Wang, Z., and Wen, Y., (2022). Toward a Systematic Survey for Carbon Neutral Data 
Centers. IEEE Communications Surveys & Tutorials, 24(2), 895–936. 
https://doi.org/10.1109/COMST.2022.3161275  

Choi, D., Chung, C. Y., Seyha, T., and Young, J., (2020). Factors Affecting Organizations’ Resistance to the 
Adoption of Blockchain Technology in Supply Networks. Sustainability, 12(21), 8882. 
https://doi.org/10.3390/su12218882  

Cuñat Negueroles, S., Reinosa Simón, R., Julián, M., Belsa, A., Lacalle, I., S-Julián, R., and Palau, C. E., (2024). A 
Blockchain-based Digital Twin for IoT deployments in logistics and transportation. Future Generation 
Computer Systems, 158, 73–88. https://doi.org/10.1016/j.future.2024.04.011  

Da Silva, M. D. M., Gamatié, A., Sassatelli, G., Poss, M., and Robert, M., (2023). Optimization of Data and Energy 
Migrations in Mini Data Centers for Carbon-Neutral Computing. IEEE Transactions on Sustainable 
Computing, 8(1), 68–81. https://doi.org/10.1109/TSUSC.2022.3197090  

DiMaggio, P., and Hargittai, E., (2023). From the “Digital Divide” to “Digital Inequality”: Studying Internet Use 
as Penetration Increases (Vol. 4). https://doi.org/10.31235/osf.io/rhqmu 

Dwivedi, Y. K., Hughes, L., Kar, A. K., Baabdullah, A. M., Grover, P., Abbas, R., Andreini, D., Abumoghli, I., 
Barlette, Y., Bunker, D., Chandra Kruse, L., Constantiou, I., Davison, R. M., De’, R., Dubey, R., Fenby-Taylor, 
H., Gupta, B., He, W., Kodama, M., … Wade, M., (2022). Climate change and COP26: Are digital technologies 
and information management part of the problem or the solution? An editorial reflection and call to action. 
International Journal of Information Management, 63, 102456. 
https://doi.org/10.1016/j.ijinfomgt.2021.102456  

Dzwigol, H., Kwilinski, A., Lyulyov, O., and Pimonenko, T., (2024). Digitalization and Energy in Attaining 
Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity. Energies, 
17(5), 1213. https://doi.org/10.3390/en17051213  

Ecklu, J., and Thomas, E., (2025). Digital Monitoring, Reporting, and Verification Technologies Supporting 
Carbon Credit-Generating Water Security Programs: State of the Art and Technology Roadmap. 
Environmental Science & Technology Letters, 12(3), 251–260. https://doi.org/10.1021/acs.estlett.4c01048  

El Zein, M., and Gebresenbet, G., (2024). Digitalization in the Renewable Energy Sector. Energies, 17(9), 1985. 
https://doi.org/10.3390/en17091985  

Fornell, C., and Larcker, D. F., (1981). Evaluating Structural Equation Models with Unobservable Variables and 
Measurement Error. Journal of Marketing Research, 18(1), 39–50. 
https://doi.org/10.1177/002224378101800104  

Frank, A. G., Batista, L., Chaudhuri, A., Subramaniam, N., Subramanian, A. M., Dora, M., and Ritala, P., (2025). 

Circular Economy and Digital Technology‐Enabled Innovation: Advances, Applications and Prospects. R&D 
Management. https://doi.org/10.1111/radm.70003  

Gerbing, D. W., and Anderson, J. C., (1988). An Updated Paradigm for Scale Development Incorporating 
Unidimensionality and Its Assessment. Journal of Marketing Research, 25(2), 186–192. 
https://doi.org/10.1177/002224378802500207  

Gonzales, A., (2016). The contemporary US digital divide: from initial access to technology maintenance. 
Information, Communication & Society, 19(2), 234–248. https://doi.org/10.1080/1369118X.2015.1050438  

Hafeez, M., Gaudreault, F., Daud, A., and Ben-Salha, O., (2025). How ICT Investment and Human Development 
Accelerate Renewable Energy and Environmental Progress? International Journal of Energy Economics and 
Policy, 15(3), 344–351. https://doi.org/10.32479/ijeep.19177  

Helsper, E. J., and van Deursen, A. J. A. M., (2017). Do the rich get digitally richer? Quantity and quality of support 
for digital engagement. Information, Communication & Society, 20(5), 700–714. 
https://doi.org/10.1080/1369118X.2016.1203454  

Hilbert, M., (2016). Big Data for Development: A Review of Promises and Challenges. Development Policy 
Review, 34(1), 135–174. https://doi.org/10.1111/dpr.12142  

Hoque, M. M., and Lee, S.-J., (2025). How digital transformation drives green Innovation: An empirical study. 
Journal of Cleaner Production, 522, 146236. https://doi.org/10.1016/j.jclepro.2025.146236 

Huisman, M., (2021). van Dijk, J.(2020). The digital divide. Cambridge/Medford: Polity. 208 pp. Communications, 
46(4), 611–612. https://doi.org/10.1515/COMMUN-2020-0026/HTML  

Khan, K., Su, C. W., Rehman, A. U., and Ullah, R., (2022). Is technological innovation a driver of renewable 
energy? Technology in Society, 70, 102044. https://doi.org/10.1016/j.techsoc.2022.102044  

Kim, J., and Mueller, C., (1978). Factor Analysis. SAGE Publications, Inc. 
https://doi.org/10.4135/9781412984256  

Lee, C.-C., Fang, Y., Quan, S., and Li, X., (2024). Leveraging the power of artificial intelligence toward the energy 
transition: The key role of the digital economy. Energy Economics, 135, 107654. 
https://doi.org/10.1016/j.eneco.2024.107654  



Journal of Cultural Analysis and Social Change, 10(2), 821-834 

© 2025 by Author/s  833 

Lee, C.-C., He, Z.-W., and Xiao, F., (2022). How does information and communication technology affect 
renewable energy technology innovation? International evidence. Renewable Energy, 200, 546–557. 
https://doi.org/10.1016/j.renene.2022.10.015  

Liu, Q., Trevisan, A. H., Yang, M., and Mascarenhas, J., (2022). A framework of digital technologies for the circular 
economy: Digital functions and mechanisms. Business Strategy and the Environment, 31(5), 2171–2192. 
https://doi.org/10.1002/bse.3015  

Luqman, A., Zhang, Q., Talwar, S., Bhatia, M., and Dhir, A., (2024). Artificial intelligence and corporate carbon 
neutrality: A qualitative exploration. Business Strategy and the Environment, 33(5), 3986–4003. 
https://doi.org/10.1002/bse.3689  

Lutz, C., (2019). Digital inequalities in the age of artificial intelligence and big data. Human Behavior and Emerging 
Technologies, 1(2), 141–148. https://doi.org/10.1002/hbe2.140  

Macintosh, A., (2004). Characterizing e-participation in policy-making. 37th Annual Hawaii International 
Conference on System Sciences, 2004. Proceedings of The, 10 pp. 
https://doi.org/10.1109/HICSS.2004.1265300  

Matos, S., Viardot, E., Sovacool, B. K., Geels, F. W., and Xiong, Y., (2022). Innovation and climate change: A 
review and introduction to the special issue. Technovation, 117, 102612. 
https://doi.org/10.1016/j.technovation.2022.102612  

Mirza, F. M., Mushtaq, I., Qurat-ul-Ann, A.-R., and Waheed, T., (2024). The Impact of ICT Usage on Energy 
Consumption Efficiency and Environmental Sustainability in Developing Countries: An Empirical Analysis. 
Pakistan Journal of Humanities and Social Sciences, 12(2), 1316–1326. 
https://doi.org/10.52131/pjhss.2024.v12i2.2219  

Mishra, S., Journal, S. S.-B. A. I., and 2021, undefined., (2019). Carbon management framework for sustainable 
manufacturing using life cycle assessment, IoT and carbon sequestration. Emerald.ComS Mishra, SP 
SinghBenchmarking: An International Journal, 2021•emerald.Com, 28(5), 1396–1409. 
https://doi.org/10.1108/BIJ-01-2019-0044/FULL/HTML  

Mougayar and Buterin., (2016). The business blockchain: promise, practice, and application of the next Internet 
technology. 
https://books.google.com/books?hl=en&lr=&id=X8oXDAAAQBAJ&oi=fnd&pg=PR9&dq=Mougayar,+
W.,+%26+Buterin,+V.+(2016).+The+business+blockchain:+Promise,+practice,+and+the+1st+imperative
+revolution.+Wiley.&ots=jgYZC_2H3D&sig=EcxOnOEwi9XIVDs8-zEjTvACZMI  

Nambisan, S., (2017). Digital Entrepreneurship: Toward a Digital Technology Perspective of Entrepreneurship. 
Entrepreneurship Theory and Practice, 41(6), 1029–1055. https://doi.org/10.1111/etap.12254  

Nunnally J.C., (1978). Psychometric Theory: 2d Ed. McGraw-Hill. https://doi.org/014662167900300216  
Pan, J., Jain, R., Paul, S., Vu, T., Saifullah, A., and Sha, M., (2015). An Internet of Things Framework for Smart 

Energy in Buildings: Designs, Prototype, and Experiments. IEEE Internet of Things Journal, 2(6), 527–537. 
https://doi.org/10.1109/JIOT.2015.2413397  

Porwol, L., Ojo, A., and Breslin, J. G., (2016). An ontology for next generation e-Participation initiatives. 
Government Information Quarterly, 33(3), 583–594. https://doi.org/10.1016/j.giq.2016.01.007  

Qureshi, S., (2020). Why Data Matters for Development? Exploring Data Justice, Micro-Entrepreneurship, Mobile 
Money and Financial Inclusion. Information Technology for Development, 26(2), 201–213. 
https://doi.org/10.1080/02681102.2020.1736820  

Schwab, K., and Zahidi, S., (2020). Global competitiveness report: special edition 2020. 
https://apo.org.au/node/310804  

Soares, F., Madureira, A., Pagès, A., Barbosa, A., Coelho, A., Cassola, F., Ribeiro, F., Viana, J., Andrade, J., 
Dorokhova, M., Morais, N., Wyrsch, N., and Sørensen, T., (2021). FEEdBACk: An ICT-Based Platform to 
Increase Energy Efficiency through Buildings’ Consumer Engagement. Energies, 14(6), 1524. 
https://doi.org/10.3390/en14061524  

Tabachnick B.G and Linda S. Fidell., (2002). Book Review of Using Multivariate Statistics by Barbara G. 
Tabachnick and Linda S. Fidell. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 621–636. 
https://doi.org/10.1207/S15328007SEM0904_9  

Wold, S., Geladi, P., Esbensen, K., and Öhman, J., (1987). Multi-way principal components-and PLS-analysis. 
Journal of Chemometrics, 1(1), 41–56. https://doi.org/10.1002/cem.1180010107  

Yi, J., Dai, S., Li, L., and Cheng, J., (2024). How does digital economy development affect renewable energy 
innovation? Renewable and Sustainable Energy Reviews, 192, 114221. 
https://doi.org/10.1016/j.rser.2023.114221  

Zahid, Z., Zhang, J., Gao, C., and Oláh, J., (2025). ICT-Driven Strategies for Enhancing Energy Efficiency in G20 
Economies: Moderating the Role of Governance in Achieving Environmental Sustainability. Energies, 18(3), 
685. https://doi.org/10.3390/en18030685  



Khan. / A Measurement Model Bridging Digital Technologies 

834  © 2025 by Author/s 

Zhang, T., Feng, T., and Cui, M., (2023). Smart contract design and process optimization of carbon trading based 
on blockchain: The case of China’s electric power sector. Journal of Cleaner Production, 397, 136509. 
https://doi.org/10.1016/j.jclepro.2023.136509  

Zhu, H., Goh, H. H., Zhang, D., Ahmad, T., Liu, H., Wang, S., Li, S., Liu, T., Dai, H., and Wu, T., (2022). Key 
technologies for smart energy systems: Recent developments, challenges, and research opportunities in the 
context of carbon neutrality. Journal of Cleaner Production, 331, 129809. 
https://doi.org/10.1016/j.jclepro.2021.129809. 


