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ABSTRACT

In accordance with SDG 13 which focuses on climate action, this study explores how digital technologies
and emerging workforce competencies can support the transition toward a carbon-neutral economy. The
research focused on developing and validating a measurement instrument specifically for the Saudi context.
A pilot survey with 30 participants assessed item clarity and dimensionality using exploratory factor analysis
in SPSS 31, identifying three key components. The main study collected 205 responses through stratified
random sampling, and confirmatory factor analysis in Amos 26 confirmed the reliability and validity of the
measurement model. The results demonstrate that the instrument effectively captures the relationships
between digital technology adoption, workforce competencies, and carbon-neutral initiatives. By providing
one of the first validated tools for Saudi Arabia, this study offers a foundation for future research and
practical applications across industries, supporting strategies for sustainable development and economic
transformation in line with national and global climate objectives.

Keywords: Carbon neutrality, confirmatory factor analysis, digital transformation, exploratory factor
analysis, measurement model, SDG, sustainable development goals

INTRODUCTION

Saudi Arabia’s pursuit of carbon neutrality under Vision 2030 has positioned both digital technologies (DT)
and emerging workforce competencies (EWC) as critical enablers of sustainable transformation. Prior research
demonstrates that DT, including smart grids (SG), artificial intelligence (Al) driven energy management, internet
of things (IoT) monitoring systems, blockchain technology (BT) for carbon tracking, and cloud computing (CC),
provide measurable mechanisms for reducing emissions, enhancing efficiency, and restructuring industrial
processes (Negueroles et al, 2024). Concurrently, EWC encompassing education, technical expertise,
entrepreneurship, and innovation have been shown to strengthen organizational and national capacity for
sustainability by fostering innovation driven practices and low-carbon solutions (Alkofahi et al., 2024).

Despite this potential, empirical studies highlight persistent gaps. Challenges include limited digital
adoption in sustainability oriented sectors, inadequate interoperability of digital systems across energy, transport,
and manufacturing, as well as skill deficiencies among youth in areas such as renewable energy software, Al enabled
emissions tracking, and circular economy solutions (Negueroles et al., 2024). Furthermore, regulatory frameworks
for digital climate solutions remain underdeveloped (Mougayar & Buterin, 2016), and structural barriers such as
insufficient investment, weak public private collaboration, and restricted funding access for green entrepreneurship
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constrain progress. While flagship projects like NEOM integrate advanced digital sustainability solutions, their
diffusion across industries remains limited.

The Kingdom’s educational reforms and government led initiatives have enhanced STEM (Science,
Technology, Engineering, and Mathematics) engagement and fostered youth participation in sustainability driven
innovation. However, critical structural barriers, such as the digital divide, fragmented regulatory support, and lack
of targeted training continue to restrict the integration of EWC and DT in advancing carbon neutrality. This
underscores the need to conceptualize and empirically validate EWC and DT as measurable constructs that
function as enablers of a carbon-neutral economy (CNE). Although prior research highlights the importance of
workforce competencies and digital technologies in advancing carbon neutrality, limited effort has been made to
empirically operationalize these constructs or validate their measurement within the Saudi context. To address this
gap, the present study adopts a two stage measurement approach: first, exploratory factor analysis (EFA) is
employed to uncover the underlying dimensions of EWC, DT, and the CNE. Second, CFA is conducted to assess
construct validity, reliability, and overall model fit. Accordingly, the study is intending to address the following
research questions:

1. What underlying dimensions of DT, EWC, and CNE can be identified through EFA?

2. How effectively can CFA validate the reliability and model fit of these constructs?

This study adopts a research approach to design and validate a measurement model that bridges DT and EWC
in advancing a CNE. This research study integrates insights across different fields, such as digital, human resource
management, and environmental sustainability with cross-cutting impacts on economic and social dimensions by
incorporating the perspectives of industrial practitioners and policymakers. This integration ensures that the
proposed model is not only theoretically rigorous but also practically relevant to the Saudi Vision 2030 sustainability
agenda and global climate action goals. This process underscores the essence of multidisciplinary research by
generating knowledge that transcends disciplinary boundaries and is directly applicable to real-world challenges
such as climate change and economic transformation.

LITERATURE REVIEW
Theoretical Background and Measurement of Constructs

DT have emerged as pivotal enablers in advancing a CNE, offering measurable mechanisms for sustainability.
Contemporary DT such as artificial intelligence (Al), machine learning (ML), blockchain technology (BT), Internet
of Things (IoT), cloud computing (CC), and big data analytics facilitate efficiency, energy optimization, and low-
carbon innovations across multiple sectors (Negueroles et al., 2024). These technologies provide measurable
outputs such as improved energy efficiency, carbon emissions tracking, renewable energy integration, and
enhanced operational performance (Dwivedi et al., 2022. For example, BT based monitoring, reporting, and
verification (MRV) enables transparent carbon credit management and supports circular carbon economy practices
(Ecklu & Thomas, 2025). IoT facilitates real-time data collection and optimization in manufacturing, transport,
and smart city applications, while CC and Al allow predictive energy management, system integration, and
decision-making for sustainable urban and industrial operations (Cao et al., 2022; Zhu et al., 2022).

EWC are equally critical, encompassing education and skill development (ESD), entrepreneurship and
innovation (EI), employment opportunities (EO), global competitiveness (GC), and social and economic equity
(SEI) (DiMaggio & Hargittai, 2023; Schwab & Zahidi, 2020; Nambisan, 2017). These constructs can be
operationalized through measurable indicators such as digital literacy, technical expertise in renewable energy and
Al applications, entrepreneurial engagement, participation in global digital platforms, and equitable access to
technology (Huisman, 2021; Qureshi, 2020). Similarly, the CNE can be measured through outcomes related to
renewable energy adoption, energy efficiency, circular carbon economy implementation, green innovation
technology, and policy and awareness support (Hafeez et al., 2025; Liu, et al., 2022; Yi, et al., 2024; Mirza et al.,
2024; Hoque & Lee, 2025; Porwol et al., 2016; Macintosh, 2004). Prior research has developed initial frameworks
for these constructs, yet empirical validation, particularly through factor analysis approaches, remains limited. Most
studies focus on isolated dimensions either DT adoption or workforce skills without systematically measuring their
combined contribution to CNE or testing the reliability and validity of measurement items across multiple
constructs (Aziz et al., 2024; Khan et al., 2022).

Saudi Arabia’s Vision 2030 underscores the central role of both EWC and DT as enablers of a CNE, yet
empirical measurement of these constructs remains limited. While conceptual linkages are well established,
measurement focused research using validated scales, indicators, and factor-analytic methods is scarce. Most
studies treat DT adoption as a uni-dimensional construct measured through self-reported adoption or frequency
indices, limiting cross-study comparability and construct validation (Dwivedi et al., 2022; Matos et al., 2022).
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Operationalization of Digital Technologies

Studies employing factor-analytic methods to operationalize DT constructs are emerging but limited. For
instance, Al, IoT, and BT have been assessed through multi-item Likert scales capturing adoption, technical
competence, and system integration (Cao et al., 2022; Lee et al., 2022). Principal component analysis (PCA) and
EFA have been used to identify latent dimensions such as process automation, predictive analytics, and smart
monitoring (Zhu et al., 2022). Blockchain, for example, is frequently operationalized through indicators such as
transaction transparency, carbon credit tracking, and MRV (measurement, reporting, verification) capabilities
(Ecklu & Thomas, 2025; Frank et al., 2025). Cloud computing constructs are measured via scalability, accessibility,
and energy efficiency indicators (Da Silva et al., 2023), while Al-enabled energy management is operationalized
through predictive accuracy, system integration, and real-time decision support (Allal-Chérif et al., 2021; Lugman
et al., 2024). Despite these examples, few studies have integrated multiple DT dimensions under a unified
measurement framework relevant to sustainability transitions.

Operationalization of Emerging Workforce Competencies

The emerging workforce is critical for operationalizing digital sustainability initiatives. Constructs such as
education and skill development (ESD), employment opportunities (EO), entrepreneurship and innovation (EI),
global competitiveness (GC), and social and economic equity (SEI) are frequently cited (DiMaggio & Hargittai,
2023; Nambisan, 2017; Schwab & Zahidi, 2020). Measurement approaches often rely on self-assessment scales,
competence inventories, or institutional proxies (e.g., STEM enrollment, digital literacy rates) (Helsper & van
Deursen, 2017; Huisman, 2021). Factor-analytic studies using PCA or EFA have been applied to validate latent
EWC dimensions, such as combining technical, entrepreneurial, and innovation capabilities into higher-order
factors (Gonzales, 2016; Qureshi, 2020). CFA has occasionally been employed to confirm reliability and factorial
validity, though integration with DT constructs remains rare.

Operationalization of Carbon-Neutral Economy

CNE related constructs include renewable energy adoption (REA), energy efficiency and conservation (EEC),
circular carbon economy (CCE), green innovation technology (GIT), and policy and awareness support (PAS)
(Hafeez et al., 2025; Liu et al., 2022). Measurement scales are typically derived from environmental performance
indicators, energy consumption metrics, and survey-based assessments of green innovation adoption (Dzwigol et
al., 2024). Few studies have validated these scales using PCA, EFA, or CFA, particulatly in the context of
integrating human capital and digital adoption as enablers of sustainability transitions (El Zein & Gebresenbet,
2024).

Although DT and EWC are increasingly recognized as key drivers of carbon neutrality, several critical
gaps remain in the literature. While conceptual frameworks suggest that technologies such as Al, IoT, BT and CC
can reduce emissions and enhance sustainability, empirical evidence quantifying their specific contributions in
national contexts like Saudi Arabia is limited (Matos et al., 2022). Similarly, research on EWC tends to be largely
qualitative, often lacking operationalized constructs and measurable indicators for skills such as digital proficiency,
entrepreneurship, and inclusive workforce participation. Moreover, the interaction between DT adoption and
workforce competencies in supporting a CNE remains underexplored, leaving the combined effects of technology
and talent largely unexamined (Lee et al., 2024).

Existing measurement approaches also exhibit notable limitations. Psychometrically validated instruments
that capture DT, EWC, and CNE collectively are scarce, resulting in fragmented assessments that examine these
constructs in isolation. While techniques such as PCA, EFA and CFA have been applied to individual constructs,
few studies employ an integrated approach to develop and validate comprehensive measurement models.
Contextual factors, including Saudi Arabia’s evolving workforce, ICT adoption patterns, and national carbon-
neutral initiatives, are frequently overlooked, limiting the applicability and generalizability of prior findings
(Dwivedi et al., 2022). These gaps underscore the need for research that establishes a unified, empirically validated
framework to examine the interplay between DT and EWC in advancing a CNE. By adopting robust factor-analytic
techniques such as EFA and CFA, such studies can operationalize key constructs, enhance comparability across
research, and provide practical insights for policy formulation, workforce development, and strategic investment
in digital infrastructure aimed at supporting sustainable transitions.

The below table 1, provides the structured table summarizing the constructs, indicators, scales, factor
analytic methods, and measurement gaps identified from the literature.

Table 1: Structured table with summary of constructs, indicator, measurement scale and gaps

. . Factor- Key
Sub-Dimensions Measurement .
Construct . Analytic Measurement
/ Indicators Scale / Method
Approach Gaps
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EFA/PCA Mostly

AI/ML: predictive to  identify technical

accuracy, energy . . latent factors; measures; rarely

management, ls\/[ulltls ftem SL;IEC;E limited CFA integrated with
optimization, Carf r’m I ly © (Allal-Chérif wotkforce and
smart decision- pertormance fogs et al, 2021; sustainability;
making Lee et al, limited

2022) validated scales

IoT: real-time

monitoting, EFA/PCA Measures often

emissions tracking, (Akpakwu et isolated;

smart cities, Likert scales, al., 2018; integration with

climate-smart sensor/usage data Mishra et al., DT or EWC

agriculture, 2019); CFA constructs

Internet of limited limited

Vehicles (IoV)

Blockchain Context-
Digital Technology (BT): EFA  (Ecklu specific; rarely
Technologies carbon credit &  Thomas, integrated with
DOT) tracking, MRV, Likert scales, 2025; Frank workforce

transparency, adoption indices et al.,, 2025); competencies

decarbonization CFA  rarely and

investment applied sustainability

support outcomes

Cloud Compu'tl'ng EFA (Da Limited cross-

(CO):  scalability, .

. Silva et al, sector

resource Likert scales, A

efficiency, ener usage/performance 2023; Q. validation;

o timiza}tfion &y o sg Zhang et al., rarely  linked

Pt : 8 2023); CFA  with EWC or
service

- sparse CNE
accessibility

Cybersecurity EFA/PCA Barely .

(CS): energy- q integrated with

proportional Surveys,  technical used DT or CNE;

. occasionally -,
operations, secure assessment empitical
iy (Pan et al, R
digital 2015 validation
infrastructure ) limited
EFA/PCA

Education & Skill

to  identify
latent

Few validated

dimensions
Development Self-assessment (DiMaggio & scales;
(ESD): STEM scales, competence Haroittai integration with
education, digital  inventories, 2023% . DT and CNE
. literacy, technical institutional proxies o constructs
Emerging expertise Huisman, minimal
Workforce 2021); CFA
Competencies occasionally
(EWC) applied
Employment
Opportunities EFA  (Lutz, Largely
(EO): digital job Surveys, 2019; perception-
access, online employment  data Gonzales, based; few
recruitment,  gig proxies 2016); CFA cross-sector
economy limited studies
participation
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Entrepreneurship
&1 tion (EI): EEA Rarel
nnovation (EL): Multi-item  Likert (Nambisan, Jarely .
startup  growth, _ integrated with
. . scales, startup 2017, -
innovation ) DT; limited
adoption, market performance Qureshi, longitudinal
’ metrics 2020); CFA A
access,  venture . validation
. L rarely applied
capital acquisition
Global
Competitiveness Few  embirical
(GO): digital PCA/EFA wvooemp
. o . validations  at
proficiency, Survey indices, occasionally individual  and
international national statistics (Schwab & coanizational
competitiveness, Zahidi, 2020) organizationa
level
workforce
productivity
Social . & PCA/EFA Measurément
Economic ased in social rarely linked to
Inequality  (SEI): Surveys, studies sustainability
digital  inclusion, socioeconomic U outcomes;
o (Helsper & . . .
access to indicators integration with
. van Deursen,
resources, income DT and CNE
. 2017) .
equality limited
Renewable Energy PCA/EFA Rare integration
: with DT and
Adoption (REA): to extract
. Energy usage workforce
solar, wind, : latent factors
. . metrics, survey measures; few
biomass adoption, . (Hafeez etal,, . .
. items . validated multi-
smart grid 2025; Yi et . .
. . dimensional
integration al., 2024)
scales
Energy Efficiency
8ILEE C(.:onserevrzll:ron? EFA/PCA Fragmented;
( ) ey Energy data, Likert- (Zahid et al, few studies
reduction, building . . .
fficiency type surveys 2025; Mirza combine with
>, et al,, 2024) DT or EWC
consumption
monitoring
Carbon- Elcrgﬁf; ?éré%n EFA (Khan, Few validated
Neutral recvclin y reuse‘ Surveys,  process 2022; Liu et scales
Economy rebericiion ’ metrics al., 2022); integrating DT
(CNE) - 0 CFA rarely and EWC
digital monitoring
Green Innovation
Technology (GIT): PCA/EFA Mostly firm-
for latent
green R&D, low- Survey and level; rarely
factors (Guo .
carbon performance linked to
. T et al., 2025;
technologies, indicators workforce  or
. . Hoque & .
innovation DT adoption
e Lee, 2025)
diffusion
Policy & EFA/PCA in
Awareness governance Limited cross-
SupP(?rt @AS): e- Likert surveys, studies sector and
participation, N (Porwol et integrated
policy indices
government al., 2016; measurement
suppott,  citizen Macintosh, with DT/EWC
engagement 2004)
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METHODOLOGY

The study used quantitative approach and collected research data using a survey questionnaire. The survey
instrument was developed from the literature based on the identification of potential enablers of DT and EWC
that will contribute for CNE. The data analysis conducted EFA to examine the underlying factor’s structure and
CFA to statistically validate the measurement model.

Data Collection Process and Survey Instrument

The study used stratified purposive sampling with expert criteria and collected data from 205 upper
management employees who have better knowledge in terms of DT adoption and have sustainable initiatives on
carbon reduction in Riyadh, Jeddah and Damam regions of Saudi Arabia. The survey was designed to capture
perceptions on technology awareness, workforce proficiency, relevance for carbon reduction, and regulatory
factors. The survey was developed using constructs from prior studies and mapped to relevant content. Example
questions on AIML, BT, CC, IoT, and CS were grouped under DT, while items on education and skill
development, employment opportunities, entrepreneurship and innovation, global competitiveness, and social-
economic inequality were captured under workforce development. Factors related to renewable energy, energy
efficiency, circular carbon practices, green innovation, and policy support were assigned to carbon-neutral
initiatives. The participants were chosen from energy and utilities; manufacturing, logistic and transportation,
construction and digital service provider sectors as they contribute in large scale projects in Vision 2030 requiring
sustainable design. Further, CFA was conducted to validate the constructs’ dimensionality and reliability,
confirming their appropriateness for inclusion in the structural model.

Measurement Items

All the constructs and the measurement items used in the study were well discussed theoretically in the
literature. However, as this area of study is still nascent and emerging, the items of the constructs were checked
for their reliability and validity. The study identified three constructs namely DT, EWC and CN. A focused
literature review on these three constructs formed the basis for identified enabling factors. These constructs were
further refined through consultations with industry experts from energy and utilities; manufacturing; logistics and
transportation; construction; and digital services to ensure contextual relevance. A pilot test with 30 participants
was then conducted to check clarity and remove any redundancies. The industry experts rated their agreement with
statements on the identified enablers using a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree).

(1) DT: The DT towards CN were measured by five items namely BT (Ecklu and Thomas, 2025; Frank et al.,
2025); 1oT integration Akpakwu et al., 2017; Mishra et al., 2019).The use of CC (Da Silva et al., 2023; Zhu et al,,
2022). AIML adoption (Allal-Chérif et al., 2021; Cao et al., 2022; Lee et al., 2022; Lugman et al., 2024) and CS
measures (Pan et al., 2015). Example statements used "To what extent do you agree that BT enhances transpatency,
efficiency, and traceability in carbon management and sustainable supply chains?"; "To what extent do you agree
that IoT enables real-time monitoring and optimization of energy and resource usage, contributing to a CNE?";
"To what extent do you agree that Al and ML improve decision-making, predict energy demands, and optimize
processes to teduce carbon emissions?”; "To what extent do you agree that robust CS ensures the safe
implementation of DT and protects sustainability related datar"; "To what extent do you agree that CC enhances
data management, collaboration, and operational efficiency, thereby supporting carbon-neutral initiatives?"

(2) EWC: This construct is measured by five items, ESD (Choi et al., 2020; DiMaggio and Hargittai, 2023;
Helsper and van Deursen, 2017; Huisman, 2021); EO (Gonzales, 2016; in, 2019); EI (Nambisan, 2017; Qureshi,
2020) GC (Hilbett, 2016; Schwab and Zahidi, 2020) and SEI (Huisman, 2021). Example statements used "The
development of youth education and digital skills enhances the effectiveness of DT in achieving carbon-neutral
goals."; "Greater EO for youth strengthen the impact of DT on organizations’ sustainability and carbon reduction
efforts."; "Youth-driven EI amplify the contribution of DT toward a carbon-neutral economy."; "Skilled youth
help organizations leverage DT to improve GC while putsuing carbon-neutral initiatives."; "Addressing SEI among
youth increases the effectiveness of DT in achieving sustainable and carbon-neutral outcomes."

(3) CNE: The construct is measured by five items, REA (Hafeez et al., 2025; Khan et al., 2022); EEC (Dzwigol
et al., 2024; Mirza et al., 2024; Soares et al., 2021; Zahid et al., 2025); CCE practices (Khan, 2022; Liu et al., 2022);
GIT (Hoque and Lee, 2025) and PAS (Porwol et al.,, 2016). Example statements used “DT (e.g., IoT, Al,
blockchain) accelerate the integration and adoption of renewable energy solutions.”; “Smart digital tools (such as
Al, 10T, and mobile apps) help optimize energy use and promote conservation practices.”’; “DT enhance the
effectiveness of reuse, recycling, and carbon capture initiatives.”; “Digital transformation fosters GIT that reduce
carbon emissions.”; “Digital platforms and e-governance increase public awareness and policy support for
achieving carbon neutrality.”
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RESULTS and DISCUSSION

This study utilized the Statistical Package for the Social Sciences (SPSS) version 31 for EFA and Amos 26 for
CFA. Table 1 presents the demographic characteristics of the participants. The majority are non-Saudi male,
predominantly within the age group of 31 to 40, and directly employed in their respective firms. Most hold a

bachelor’s degree, with service-based organizations placing greater emphasis on carbon neutral initiatives through
the adoption of DT.

Table 1: Profile of responding firms.

Variable Categories Frequency %
Below 20 26 12.68
21-30 41 20.00
Age 31-40 64 31.22
41-50 46 22.44
Above 50 28 13.66
Gender Male 148 72.20
Female 57 27.80
Nationality Saudi 81 39.51
Non-Saudi 124 60.48
High School 6 2.93
Education Bachelor 92 44.88
Level Master 80 39.02
Ph.D. 27 13.17
Type of the Product based 60 29.27
firm Service based 145 70.73
Employee 74 36.10
Curre.nt Consultant 52 25.37
Occupation  /
Role Entrepreneur 41 20.00
Researcher 38 18.54

Exploratory Factor Analysis

EFA encompasses a set of statistical techniques designed to represent a large group of observed variables
through a smaller number of latent constructs (Kim & Mueller, 1978). Its primary goal is to reduce dimensionality
by clustering variables that exhibit high intercorrelations into distinct factors Tabachnick and Fidell, 2002). Within
EFA, PCA is the most commonly applied method as a data reduction technique for continuous variables,
identifying dominant patterns in the dataset through component scores and loading structures (Wold et al., 1987).
In this study, PCA with varimax rotation was employed with fifteen measurement items to explore the factors
contributing to the study. The item-total correlations ranged between 0.30 and 0.801, with all item validity
coefficients exceeding the threshold of 0.30. As suggested by Tabachnick and Fidell, 2002, the analysis
incorporated Kaiser-Meyer-Olkin (KMO) higher than 0.5, which resulted in 0.894 and Bartlett’s test of sphericity
is significant (4295.918; p < 0.001) and assessed the sampling adequacy and factorability conditions, scree plots,
factor loadings, and total variance explained to determine the robustness of the factor structure. Components with
eigenvalues exceeding 1 and variables with factor loadings above 0.5 were retained, with all items demonstrating
loadings greater than 0.5 on their respective constructs ranging from 0.824 to 0.928. Table 2 demonstrates the
PCA results and screen plot in figure 1. The items were also checked for any possible cross loadings to avoid
problems in construct validity and measurement ambiguity in further analysis.

Table 2: Rotated Component Matrix.
Statement Component
1 2 3

Item

I agree that blockchain technology enhances
BT transparency, efficiency, and traceability in carbon 0.909
management and sustainable supply chains.
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I agree that IoT enables real-time monitoring
IoT and optimization of energy and resource usage, 0.928
contributing to a carbon-neutral economy.

I consider that cloud computing enhances data
management, collaboration, and operational
efficiency, thereby supporting carbon-neutral
initiatives.

CC 0.898

I believe that Al and ML improve decision-
AIML making, predict energy demands, and optimize 0.923
processes to reduce carbon emissions.
I agree that robust cybersecurity ensures the safe
CS implementation of digital technologies and protects 0.893
sustainability related data.

I believe the development of youth education
ESD and digital skills enhances the effectiveness of digital 0.844
technologies in achieving carbon-neutral goals.

I understand greater employment opportunities
for youth strengthen the impact of digital
technologies on organizations’ sustainability and
carbon reduction efforts.

EO 0.890

I agree youth-driven entrepreneurship and
El innovation amplify the contribution of digital 0.895
technologies toward a carbon-neutral economy.

I trust skilled youth help organizations leverage
digital ~ technologies  to  improve  global
competitiveness while pursuing carbon-neutral
initiatives.

GC 0.897

I agree addressing social and economic
inequalities among youth increases the effectiveness
of digital technologies in achieving sustainable and
carbon-neutral outcomes.

SEI 0.908

1 agree digital technologies accelerate the

REA integration and adoption of renewable energy 0.850
solutions.

I believe smart digital tools help optimize energy

EEC . .
use and promote conservation practices.

0.824

I trust digital technologies enhance the
CCE effectiveness of reuse, recycling, and carbon capture 0.883
initiatives.
I believe digital transformation fosters green
GIT innovations and technologies that reduce carbon 0.892
emissions.

I understand digital platforms and e-governance
PAS increase public awareness and policy support for 0.902
achieving carbon neutrality.

Initial

. 7.699 3.755 1.590
eigenvalues
0
./0 of 51.326 25.003 10.603
Variance
Cumulative

% 51326 76359 86962

Source: SPSS analysis of primary data.
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Figure 1: Factor graph for eigen values
Confirmatory Factor Analysis

CFA was conducted using AMOS version 26. The measurement model demonstrated strong construct
reliability, as indicated by composite reliability (CR) values ranging from 0.940 to 0.960, exceeding the
recommended threshold of 0.70 (Nunnally J.C, 1978), as presented in Table 3. The average variance extracted
(AVE), which represents the proportion of variance captured by a construct relative to measurement error, ranged
from 0.701 to 0.927, surpassing the 0.50 cutoff suggested by (Fornell and Larcker, 1981). As suggested by Bentler,
1980, the statistically acceptable fit indices as shown in Table 4. The overall model exhibited a good fit across
multiple indices: relative y? = 2.790 (p < 0.001), GFI = 0.901, CFI = 0.964, RMSEA = 0.080, and SRMR = 0.035.
Construct validity was further assessed through convergent and discriminant validity tests. Convergent validity was
supported, with factor loadings of the indicators on their respective constructs ranging from 0.760 to 0.982,
consistent with the recommendations of Gerbing and Anderson, 1988. Discriminant validity was confirmed by
comparing the square root of the AVE for each latent variable with the correlations between constructs, ensuring
that each construct was distinct from the others.

Table 3: Reliability and Convergent Validity.

Variable .
/ Ttem Standard%zed Cronba CR AVE
Factor Loading ch Alpha
Construct
BT 0.982
IoT 0.967
DT cc 0.951 0.985 0.98 0.927
AIM 4
0.971
L
CS 0.944
ESD 0.881
EO 0.914 0.97
EWC EI 0.937 0.972 5 ’ 0.874
GC 0.966
SEI 0.974
RE
A 0.781
EE
CNE C 0.760 0.921 1 0.92 0.701
CCE 0.863
GIT 0.883
PAS 0.891

Table 4: Goodness of fit indexes for the factor structure of the scale items.

Goodness of Fit Index Lim/?tccep tzble Ob'?;?rllifis
<5 moderate

X2/df fit 2.790
<3 good fit

Goodness of fit index (GFI) >0.90 0.901

Comparative fit index (CFI) >0.90 0.964

Normed fit index (NFI) >0.90 0.945

Relative Fit Index (RFI) >0.85 0.934
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Standardized Root Mean  Square
Residual (SRMR)
Root  mean  square  error  of

approximation (RMSEA)

< 0.08 0.035

< 0.08 0.080

As shown in the figure 2, the CFA results indicate that BT (0.98), AIML (0.97), and IoT (0.97) exhibit very high
standardized regression weights with the DT construct. Similarly, GC (0.97), SEI (0.97), and EI (0.94) revealed
substantial loadings on the EWC latent construct, and PAS (0.89), GIT (0.88) are potential items of CNE. This
demonstrates that these items strongly contribute and are reliable indicators of the latent construct.
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Figure 2: Measurement Model
Table 5: Correlation of the constructs.

Relationship Coefficient
DT <--> EWC 0.658
EWC <> CNE 0.111*
DT <--> CNE 0.049

The findings indicate that mid-career professionals in service oriented firms, predominantly non-Saudi males
with bachelor’s degrees, are actively engaging with DT to advance sustainability objectives. The high level of
educational attainment suggests that organizations prioritize skilled personnel capable of leveraging DT to enhance
operational efficiency and foster innovation, reflecting a strategic alignment between workforce capabilities and
carbon-neutral initiatives. EFA confirmed three distinct but interrelated constructs DT, EWC, and CNE together
explaining neatly 87% of the variance. CFA further validated the model, demonstrating high reliability and
convergent validity, with strong factor loadings for key DT items (BT, Al & ML, IoT) and EWC items (GC, EI
and SEI). As seen in table 5, the correlation results among the constructs between DT and EWC (r = 0.658, p <
0.001) indicates that technological adoption significantly enhances workforce competencies. In contrast, the direct
relationships between DT and CNE (r = 0.049, p < 0.05) and between EWC and CNE (r = 0.111, p < 0.05) were
weak but significant, suggesting that additional organizational mechanisms mediate the translation of technology
and skills into tangible carbon-neutral outcomes. These results emphasize that while DT and workforce
competencies are critical enablers, achieving carbon neutrality requires a coordinated approach that integrates
technology, human capital development, and organizational processes. Investing in digital skills and technological
education is therefore essential to accelerate Saudi Arabia’s transition toward a carbon-neutral economy, promote
sustainability, and support the broader objectives of Saudi Vision 2030. The findings align with prior studies
highlighting the role of digitalization in circular economy practices and sustainable development (Alkofahi et al.,
2024). This study underscores the strategic importance of workforce competencies and digital innovation in
bridging the gap between technological potential and sustainable impact.
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RESEARCH LIMITATIONS

While this study provides important insights, there are several limitations that should be considered. First, the
sample was heavily skewed toward non-Saudi males aged 31—40, most of whom held bachelor’s degrees and
worked in service-oriented organizations. This limits the generalizability of the findings to other demographic
groups, including females, younger or older employees, individuals with different educational backgrounds, and
those working in product based or smaller firms. Future research should aim for a more balanced and
representative sample to better reflect the diversity of the Saudi workforce. Second, although rigorous statistical
methods such as EFA and CFA were employed to validate the measurement model, the cross-sectional design of
the study restricts the ability to establish causal relationships among DT, EWC and CNE outcomes. Longitudinal
studies or experimental designs would provide a clearer understanding of how these factors interact and evolve
over time.

Finally, this study relied primarily on quantitative, organizational level data, which may not fully capture
the cultural, behavioral, or contextual factors that influence carbon-neutral initiatives. The relatively weak direct
correlations observed between DT and CNE outcomes, as well as between EWC and CNE, suggest the potential
influence of mediating or moderating variables that were not included in the analysis. Future research could
incorporate qualitative approaches, or explore additional factors such as organizational culture, regulatory
frameworks, or employee engagement to provide a more comprehensive understanding of the drivers behind
carbon-neutral transitions in Saudi Arabia.

CONCLUSION

This study highlights the critical role of DT and EWC in supporting Saudi Arabia’s transition toward a CNE.
While advanced technologies such as BT, AIML, IoT, CC and CS improve operational efficiency and promote
sustainability initiatives, their direct impact on carbon-neutral outcomes appears limited. Instead, these
technologies are most effective when combined with a skilled, competent workforce, emphasizing the importance
of education, training, and innovation in converting technological adoption into tangible environmental benefits.
The strong positive relationship between DT and EWC underscores the need for continued investment in digital
skills and workforce development. By enhancing organizational capabilities, such investments can accelerate the
implementation of carbon-neutral practices. Although the direct effects of workforce competencies and
technology adoption on carbon neutrality were modest, they were statistically significant, indicating that broader
organizational and systemic factors likely mediate these relationships. Moreover, the findings suggest that
integrating advanced digital technologies with strategic human capital development is essential for improving
energy efficiency, reducing carbon emissions, and achieving Saudi Arabia’s sustainability and economic
diversification goals under Vision 2030. By promoting technological literacy and strengthening workforce
competencies, organizations can harness digitalization to drive sustainable development while building long-term
economic resilience.
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