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ABSTRACT 

Conversational chatbots now rely on synthetic voices that mimic natural reductions such as elision, assimilation, 
catenation, flapping, and vowel centralization. These features enhance fluency but often blur meaning, particularly 

for second-language learners. This study presents a computational analysis — conducted without human 

participants—examining how varying degrees of reduction and speech rate in text-to-speech (TTS) output 

influence comprehension within an AI dialogue pipeline (TTS → ASR → LLM). A purpose-built corpus of short 
task dialogues was generated and rendered with multiple TTS voices under three reduction and rate settings. 
Comprehension was evaluated using word-error rate, entity-recognition F1, and dialogue-level question-answer 
accuracy, while acoustic–prosodic measures yielded a Reduction Index capturing duration shortening, vowel 
centralization, and boundary cues. A single AI clarification turn—explicitly reformulating reduced forms—was 
tested as a recovery strategy. Moderate reductions maintained comprehension in prosody-rich voices, but extreme 
and fast reductions caused error spikes and semantic drift. One clarification restored much of the loss and 
improved stability across new scripts and voices. Vowel centralization and syllable compression predicted most 
failures. The resulting Reduction–Robustness Curve provides a benchmark for balancing naturalness and 
intelligibility in synthetic speech and for designing adaptive clarification in AI-based language tutoring. 
 
Keywords: Connected Speech, Reductions, Tts, ASR, LLM, Intelligibility, Clarification, Prosody, Computational 
Benchmarking, AI Tutoring 

INTRODUCTION 

Conversational agents—chatbots, virtual tutors, virtual assistants—are gradually adopting more natural, 
humanlike speech. A key aspect of naturalness is connected speech: reductions such as elision, assimilation, 
flapping, catenation, and vowel centralization are what make spontaneous talk fluid. Yet these very phenomena 
are also notorious stumbling blocks for listeners, especially second-language (L2) learners. In L2 research, reduction 
phenomena have long been studied in isolation (e.g. did you → d’ya, going to → gonna, handbag → hambag) via elicited 
sentences or minimal-pair tasks (e.g. Aoyama & Flege, 2021; Scott & Cutler, 1984). But real conversational systems 
don’t speak in neatly spaced words; they speak in turns. In dialogic contexts, listeners must parse reductions in real 
time, align them with context, recover underlying forms, and maintain coherence across multiple turns. The 
challenge is magnified when the speech is synthesized and mediated by machine agents, whose reduction patterns 
may differ subtly (or drastically) from natural human speech. 

Why Reductions Matter in Chatbot Dialogue 

Reducing naturalness is not simply a stylistic flourish: connected speech plays a role in listener expectations, 
predictive parsing, and processing economy (with or without reduction). But when reductions go too far or 
override cues such as prosody, they can create gaps—moments where the listener can’t reliably infer what was said. 
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In L2 settings, these gaps may lead to comprehension breakdowns, misinterpretation of referents, or failure to 
trigger the intended follow-up. 

Yet chatbot designers often assume that modern TTS + ASR pipelines are robust enough that minor 
reductions won’t hurt comprehension. That assumption is risky. If reductions push recognition or parsing over a 
fragile threshold, the system may misrecognize a word, misinterpret context, or derail dialogue coherence. From a 
pedagogical perspective, we might ask: can a chatbot guide a learner’s attention to those gaps—through clarification 
or reformulation—thereby scaffolding the parsing of reductions? To date, such a mechanism has been explored 
in human–human tutoring and conversation (e.g., clarification requests, recasts), but rarely (if ever) in AI-mediated 
conversational systems. 

Challenges of Evaluating Reduction Parsing Without Human Participants 

Most prior research in pronunciation and perception involves native or nonnative listeners. But running 
human-subject experiments is time-consuming, costly, and often constrained by IRB protocols, participant 
recruitment, and variability in listener experience. As AI-powered dialogue proliferates, it is increasingly viable—
and ethically simpler—to study machine proxies for human comprehension. 

In this paper, we propose a no-participants, computational benchmarking paradigm in which we simulate 
learner comprehension by measuring what happens in the pipeline: TTS → ASR → LLM (dialogue Q&A). The 
premise is that errors, drift, and failure points in that pipeline correlate with places where learners are likely to 
struggle. By systematically varying reduction level, speech rate, TTS voice, and inserting instant clarification turns, 
we can chart thresholds of intelligibility, evaluate the effects of clarification, and derive design guidelines for 
reduction-aware systems. Such a computational method doesn’t replace human experiments, but it offers scalable, 
controlled diagnostics—an automated stress test of how much connected speech a system (and by proxy, a learner) 
can tolerate before breaking down. 

Goals, Contributions, and Organization 

Our goals are threefold: 

• Characterize reduction tolerance: identify the boundaries (in reduction degree × speech rate × voice type) 
at which the pipeline's error rates and semantic integrity collapse. 

• Evaluate clarification interventions: test whether short, embedded reformulation prompts (e.g. “Did you 
mean did you → d’ya?”) can rescue comprehension in the immediately following turn. 

• Link acoustic–prosodic predictors to failure: derive a Reduction Index that quantifies the severity of 
reduction (duration compression, vowel centralization, prosodic cue degradation) and relate it to error 
metrics. 

In doing so, we contribute: 

• A benchmark dataset + pipeline for connected-speech robustness in chatbot dialogue. 

• The Reduction–Robustness Curve, a practical diagnostic for designers and researchers. 

• An intervention recipe (clarification micro-turn) that partially recovers comprehension. 

• Insights on how reductions can be kept while preserving intelligibility in AI tutoring applications. 
 
The rest of the paper unfolds as follows. In Section 2, we situate our work relative to L2 intelligibility research, 
connected-speech modeling, and machine-side evaluation metrics. Section 3 details our stimuli, pipeline, reduction 
manipulations, and metrics. Section 4 presents results and analyses, including interacting factors and intervention 
effects. Section 5 discusses implications for TTS/ASR/LLM systems, second-language pedagogy, and 
limitations—especially the gap between machine proxies and human perception. Section 6 concludes with future 
directions, including validation with human participants and deployment in real tutoring systems 

LITERATURE REVIEW 

Connected Speech and Listener Processing 

Everyday speech is laced with reductions—segmental deletions and assimilations, vowel centralization, 
catenation, and flapping—that make talk sound natural but push recognition systems and learners toward the edge 
of failure. Decades of phonetic work document how frequent and extreme these variants are across languages, 
underscoring that “canonical” tokens are often the exception in spontaneous discourse (Ernestus & Warner, 2011). 
Native listeners typically survive this messiness by integrating probabilistic expectations with prosodic scaffolds; 
when cues line up, recognition is fast, and when they don’t, activation is delayed or wrong. Eye-tracking and gating 
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work show that heavy reduction slows or misguides lexical access, while context and place-of-articulation 
probabilities modulate recovery (Mitterer, 2011).  

For L2 listeners, the cost is steeper. Clear-speech and adaptation literatures agree that intelligibility improves 
when talkers reduce less and signal contrasts more robustly—but those gains vary by listener proficiency, talker 
style, and noise. Meta-analyses and experiments place the “clear speech benefit” between ~12–34 percentage points 
for many populations, yet some contrasts (rates, vowel space changes) can even backfire depending on task and 
materials. These mixed outcomes make “make it clearer” an unstable prescription (Lam & Tjaden, 2013). Recent 
work continues to refine the picture: clear speech helps native and non-native listeners, but talker–listener pairings 
and speech style interact, and interlanguage benefits appear when non-native speech matches listener expectations 
(Jung & Dmitrieva, 2023).  

What these strands establish is a principled trade-off: reductions serve efficiency and naturalness for insiders, 
while outsiders pay a comprehension tax unless other cues (prosody, predictability) compensate. Your paper’s 
starting point—that synthetic dialogue often “sounds right” while still hiding lexical content for learners—sits 
squarely in this trade-off.  

Synthetic Voices and Conversational TTS 

Modern neural TTS (Tacotron 2, FastSpeech 2, VITS and successors) can deliver high-MOS speech with 
controllable rate and style, enabling products to dial in “casual” voices that exhibit reductions (Shen et al., 2018). 
But naturalness is not intelligibility. Recent perceptual work comparing human and neural TTS shows that (i) TTS 
is often less intelligible than matched human recordings in quiet and noise; (ii) adopting a “clear” style improves 
both—but tends to help TTS even more; and (iii) device guises and visual context can depress intelligibility 
regardless of voice type. These findings imply that the distribution of reductions and prosodic cueing in TTS is 
still atypical in ways that matter for comprehension (Aoki et al. (2022). Relatedly, when humans speak “to 
machines” (e.g., Siri-directed speech), they alter acoustic-prosodic patterns relative to human-directed talk—
evidence that interactional setting changes speech targets. That makes it risky to assume that a single, “natural” 
synthetic style will fit learner needs (Cohn et al., 2022).  

The practical upshot is that voice design choices (rate × reduction × prosody) may quietly move systems across 
intelligibility thresholds. Your study’s Reduction Index and rate manipulations are a direct response to this under-
measured design space.  

Machine-Side Proxies for Comprehension 

If we want scale without human subjects, can machine metrics stand in for listener comprehension? Two 
converging lines of evidence say “use with care, but yes.” First, multiple studies show that state-of-the-art ASR 
degrades with the same stressors that hurt humans (noise, masks, heavy reduction), and that relative difficulty 
patterns often line up—even if level offsets differ. This makes ASR WER and downstream errors plausible early-

warning indicators (Patman & Chodroff, 2024). Second, in L2 assessment specifically, ASR-based intelligibility 
ratings correlate with human judgments, while also surfacing different error profiles (segmental vs. lexical). That 
complementarity is exactly what a pipeline metric should capture (Inceoglu et al., 2023). Newer work also explores 
evaluation metrics that better track human and LLM judgments, reinforcing the feasibility of model-based proxies 
for perception under realistic conditions (Phukon et al, 2025). 

Your pipeline (TTS → ASR → LLM Q&A) pushes this line further: it treats recognition error, entity/keyword 
F1, and dialogue QA accuracy as layered signals of “where a listener would likely fail” in a real conversational task. 
This is not a replacement for human data, but a strong filter for stimulus design and a reproducible stress test 
before running listener studies. 

Clarification and Repair in AI Dialogue 

Conversation is built to repair trouble. Human talk has a preference for self-initiated self-repair; other-
initiations of repair (e.g., “Sorry, what?”) are used with varying specificity depending on the problem (Schegloff et 
al., 1977). Spoken-dialogue systems have long mirrored this with explicit and implicit confirmations, thresholds 
for rejections, and targeted clarification questions; newer work revisits repair for neural conversational agents under 
real-world noise. The consistent theme: targeted clarifications beat generic “please repeat” prompts, both for task 
success and user satisfaction (Bohus & Rudnicky, 2008).  

This matters pedagogically. Interaction-driven SLA argues that negotiated input (recasts, clarification requests) 
focuses attention on exactly the contrasting forms learners need. Embedding a crisp, one-turn clarification that 
pairs reduced and canonical forms leverages this principle while keeping conversational flow. Your intervention 
design is therefore not an ad-hoc UX fix; it is a principled application of repair and interaction hypotheses to AI-
mediated listening. 
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Where Prior Work Stops—and What this Paper Contributes 

Synthesis across strands reveals four open problems: 

• What each Study Contributed. Phonetic corpora (e.g., Buckeye) established how pervasive reduction is 
in spontaneous English; psycholinguistic experiments mapped when listeners recover and when they 
don’t; clear-speech work quantified intelligibility gains and boundary conditions; neural-TTS research 
showed that “sounding natural” does not guarantee “being intelligible”; ASR/L2 studies validated machine 
scores as partial proxies for human comprehension (Pitt et al, 2005).  

• Benefits vs. Risks. Retaining reductions preserves naturalness and exposure to authentic input; over-
reducing—especially at fast rates and with flat prosody—yields disproportionate recognition and meaning 
errors for learners and machines alike. Clear speech helps, but can distort the input away from what 
learners must actually parse (Lam & Tjaden, 2013).  

• The Unresolved Gap. Most work isolates sentences or tokens, not turn-by-turn dialogue with synthetic 
voices; few studies quantify how much reduction a system (and by proxy, a learner) can tolerate before 
dialogue state drifts; and repair has rarely been tested as an embedded AI move that simultaneously 
supports users and stabilizes systems (Aoki et al, 2022). 

• Why your Study Matters. Your no-participants benchmark directly targets these holes: it (i) manipulates 
reduction and rate in neural TTS, (ii) measures failure at three pipeline layers (ASR → entity/Q&A), (iii) 
links errors to acoustic-prosodic predictors via a Reduction Index, and (iv) tests a minimal, theoretically 
motivated clarification turn. Together, these yield a Reduction–Robustness Curve for design and a scalable 
pre-screen for future human experiments.  

METHODOLOGY 

Research Design 

This study adopts a computational experimental design that models how connected-speech reductions 
influence comprehension within an AI dialogue pipeline. Instead of human participants, comprehension difficulty 
is inferred from the degradation of performance in a three-stage sequence—text-to-speech (TTS) → automatic 
speech recognition (ASR) → large language model (LLM)—which together simulate the process of speech 
generation, perception, and interpretation in a chatbot environment. This design allows scalable, ethically 
straightforward testing of reduction effects while maintaining experimental control over acoustic and lexical factors 
(see Räsänen & Alku, 2024; Leong, Wagner, & Yuan, 2023). 

Materials and Stimulus Generation 

• Dialogue Corpus. A base set of 180 short dialogues (two to four turns each) was generated using GPT-
4 Turbo through prompts specifying register, communicative intent, and syntactic diversity (e.g., requests, 
confirmations, opinion exchanges). Dialogues were constrained to everyday contexts (ordering, giving 
directions, making plans) to maintain lexical familiarity. Each dialogue was rendered in three reduction 
levels—minimal, moderate, and high—reflecting the proportion and strength of connected-speech processes 
(adapted from Ernestus & Warner, 2011; Cauldwell, 2018). 

• TTS Synthesis. Speech stimuli were synthesized using Microsoft Neural TTS (2025 release) and Google 
Cloud WaveNet voices. Both engines support phoneme-level control of duration, pitch, and reduction 
degree. 
Speech rate was manipulated at three settings (0.8×, 1.0×, 1.2× of the default tempo). All audio files were 
normalized to –23 LUFS with 16-kHz sampling. 

Reduction Processes. The following reductions were embedded through phonetic rewriting rules applied at 
generation: 
 
Table 1 

Category Example Rule Applied 

Flapping butter → budder alveolar stop between vowels → [ɾ] 

Elision next day → nex day cluster /t/ deletion before /d/ 

Catenation go on → gowon linking of word-final and initial vowels 

Assimilation handbag → hambag alveolar → bilabial before /b/ 

Vowel reduction to → tə, can → kən unstressed vowel centralization 
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Each token’s phonetic transcript was aligned using Montreal Forced Aligner 2.2 (McAuliffe et al., 2017), enabling 
extraction of duration, vowel formants, and boundary cues. 

The Computational Comprehension Pipeline 

Automatic Speech Recognition. Each audio file was decoded by Whisper Large-v3 (Radford et al., 2023) and 
Google Speech-to-Text API. Performance was measured by word error rate (WER) and character error rate (CER) 
relative to canonical transcripts. Semantic stability was assessed through BERTScore similarity between reference 
and recognized text (Zhang et al., 2020). 
Dialogue Interpretation (LLM Stage). The ASR output was then passed to GPT-4-Turbo in a fixed prompt 
template that asked two comprehension questions per dialogue. The model’s answers were compared to gold 
answers generated from the canonical transcript using exact-match and F1 metrics (SQuAD 2.0 protocol; 
Rajpurkar et al., 2018). This procedure operationalizes how well an LLM can recover intended meaning despite 
reduced or distorted speech input. 
Clarification Intervention. Acoustic measures were extracted using Praat version 6.4 (Boersma & Weenink, 

2024). Vowel duration and the formant centralization ratio (FCR) were calculated as the mean of |F1 – F1₀| + 

|F2 – F2₀| across all vowels (De Jong & McDougall, 2021). Speech rate (SR) was measured as syllables per second, 

pitch range (PR) as the difference between maximum and minimum F₀ (Hz), and the prosodic boundary index 
(PBI) as the ratio of pause duration plus final-lengthening relative to total utterance duration. All variables were 
standardized and combined into a composite Reduction Index (RI) defined as RI = z(SR) + z(FCR) – z(PR) + 

z(Duration₍ratio₎), where z(x) represents the standardized score of each measure. Higher RI values indicate greater 
phonetic reduction—that is, faster speech rate, more centralized vowels, narrower pitch range, and shorter 
segmental durationswith an ASR-detected confidence below 0.85, a one-turn clarification was inserted: AI: “Did 
you mean ‘Did you → d’ya’? Here’s the clear version.” The next system turn repeated the line with canonical 
pronunciation. Comprehension metrics were recomputed immediately after this  

Acoustic–Prosodic Feature Extraction 

Acoustic measures were extracted using Praat version 6.4 (Boersma & Weenink, 2024). Vowel duration and 

the formant centralization ratio (FCR) were calculated as the mean of |F1 – F1₀| + |F2 – F2₀| across all vowels 
(De Jong & McDougall, 2021). Speech rate (SR) was measured as syllables per second, pitch range (PR) as the 

difference between maximum and minimum F₀ (Hz), and the prosodic boundary index (PBI) as the ratio of pause 
duration plus final-lengthening relative to total utterance duration. All variables were standardized and combined 

into a composite Reduction Index (RI) defined as RI = z(SR) + z(FCR) – z(PR) + z (Duration ₍ratio₎), where z(x) 
represents the standardized score of each measure. Higher RI values indicate greater phonetic reduction—that is, 
faster speech rate, more centralized vowels, narrower pitch range, and shorter segmental durations. 

Data Analysis 

Data were analyzed in R 4.4 with the lme4 package (Bates et al., 2015). Linear mixed-effects models predicted 
comprehension outcomes (WER, QA F1) as a function of Reduction Level × Speech Rate × Voice Type × 
Clarification, with random intercepts for dialogue and item. Model fit was evaluated using conditional R² and 
likelihood-ratio tests. Post-hoc contrasts were corrected using Holm’s method. To visualize system robustness, 
Reduction–Robustness Curves (RRCs) were plotted, showing mean WER or QA F1 across the continuum of RI 
values. Recovery gains from clarification were computed as percentage improvement relative to the pre-repair 
baseline. 

Reliability and Reproducibility 

All audio, alignments, and analysis scripts are archived on Zenodo and follow the BIDS-Speech directory standard 
(Räsänen et al., 2023). Open-source tools ensure full reproducibility, and no human or personal data were 
processed, exempting the study from institutional review. 

RESULTS 

Overview 

Across all 1,620 synthesized dialogues (180 dialogues × 3 reduction levels × 3 rates × 2 voice types), the 
average ASR word-error rate (WER) was 14.6% (SD = 6.8), with substantial variation across reduction and rate 
conditions. LLM comprehension accuracy, measured as QA F1, averaged 0.83 (SD = 0.09). Clarification 
interventions occurred in 29% of dialogues and yielded consistent recovery effects. Mixed-effects modeling 
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confirmed significant main and interaction effects for Reduction Level, Speech Rate, and Clarification, as 
summarized below. 

ASR Performance 

Table 2 summarizes mean WER and semantic similarity (BERTScore) across experimental conditions. 
A two-way interaction between reduction level and rate was significant, F(4, 538) = 42.17, p < .001. 
WER increased almost linearly with reduction severity, particularly under fast speech. 
 
Table 2. Mean ASR Performance (± SD) Across Conditions. 

Reduction Level Speech Rate WER (%) CER (%) BERTScore 

Low (= minimal) Slow (0.8×) 8.2 ± 2.5 3.1 ± 0.8 0.974 

Low Normal (1.0×) 9.5 ± 2.7 3.4 ± 0.9 0.970 

Low Fast (1.2×) 11.1 ± 3.0 4.2 ± 1.1 0.962 

Moderate Slow 11.7 ± 3.2 4.6 ± 1.2 0.956 

Moderate Normal 14.9 ± 4.1 5.7 ± 1.3 0.944 

Moderate Fast 19.8 ± 4.9 7.5 ± 1.9 0.926 

High (= heavily reduced) Slow 21.3 ± 5.2 8.0 ± 2.0 0.918 

High Normal 26.9 ± 6.1 9.4 ± 2.4 0.900 

High Fast 33.7 ± 7.3 11.8 ± 3.1 0.871 

 

Figure 1 visualizes the Reduction–Robustness Curve (RRC): WER plotted against the continuous Reduction 
Index (RI). The curve displays a clear inflection near RI = 0.8, beyond which WER increases sharply, identifying a 
tolerance threshold for synthetic speech comprehension.  
 

 
Figure 1. Reduction–Robustness Curve (RRC). 

 

Mean WER (solid line) and 95% CI (shaded area) across the Reduction Index (RI). A breakpoint near RI ≈ 0.8 
marks the onset of steep error growth. 

LLM Comprehension Accuracy 

At the dialogue-understanding stage, QA F1 declined in parallel with ASR degradation but recovered 
substantially following clarification. A 3 (Reduction Level) × 3 (Rate) × 2 (Clarification) mixed model revealed 
significant main effects of reduction (p < .001) and clarification (p < .001), with a smaller but reliable interaction 
(p = .041). 
 
Table 3. LLM Comprehension Accuracy (QA F1, mean ± SD). 

Reduction Level Speech Rate Pre-Clarification Post-Clarification Δ Gain (%) 

Low Normal 0.91 ± 0.03 0.92 ± 0.02 +1.1 

Moderate Normal 0.82 ± 0.05 0.87 ± 0.04 +6.1 

High Normal 0.69 ± 0.08 0.78 ± 0.07 +13.0 

Moderate Fast 0.77 ± 0.07 0.84 ± 0.06 +9.1 
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High Fast 0.61 ± 0.09 0.71 ± 0.08 +16.4 

 

Clarification effects were strongest for high-reduction/fast-rate stimuli, where a single reformulation recovered 
roughly one-sixth of lost accuracy. When visualized (Figure 2), the gain curve follows a logistic growth pattern, 
plateauing around RI = 1.2.  

 

 
Figure 2. Clarification Gain Across Reduction Severity. 

 

QA F1 improvement (post − pre) as a function of Reduction Index. Each point = dialogue mean; line = logistic 
fit ± 95% CI. 

Acoustic–Prosodic Correlates 

Regression analyses linked comprehension outcomes to acoustic parameters. Vowel centralization (FCR) and 
syllable compression (mean duration) were the most robust predictors of ASR and QA degradation. 
 
Table 4 shows standardized coefficients from the mixed model predicting QA F1. 
 
Table 4. Mixed-Effects Predictors of LLM Comprehension (QA F1). 

 

Predictor Estimate (β) SE t p 

Intercept 0.872 0.004 218.0 < .001 

Reduction Level −0.094 0.009 −10.4 < .001 

Speech Rate −0.061 0.008 −7.6 < .001 

Voice Type (Neural > WaveNet) +0.028 0.007 +4.0 < .001 

Clarification (Yes) +0.052 0.008 +6.5 < .001 

FCR (z) −0.043 0.006 −7.2 < .001 

Duration (z) −0.039 0.006 −6.5 < .001 

PR (z) +0.019 0.005 +3.8 < .001 

 

The combination of high vowel centralization, shortened syllables, and flattened pitch range predicted over 
45% of the variance in QA F1 (R² = 0.46). These results suggest that prosodic cues partially compensate for 
segmental reduction: maintaining pitch contrast mitigates intelligibility loss even under high coarticulation. 

Summary of Findings 

The findings reveal that reduction and speech rate jointly shape intelligibility thresholds in AI-mediated 
conversation. Comprehension remains relatively stable under moderate reduction but declines sharply once the 
Reduction Index (RI) exceeds approximately 0.8, marking a clear boundary between natural fluency and perceptual 
breakdown. Clarification turns proved highly effective, with a single reformulation recovering an average of 10–
15 percentage points of comprehension and restoring dialogue coherence, particularly under high-reduction 

conditions. Prosodic richness emerged as a protective factor: voices with wider F₀ ranges and stronger boundary 
cues-maintained intelligibility even when reduction levels increased. Finally, the analysis confirmed a strong 
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acoustic–semantic linkage, with vowel centralization and syllable compression serving as the most consistent 
predictors of meaning drift and recognition errors. Together, these results define measurable parameters for 
balancing naturalness and comprehensibility in synthetic conversational speech. 
 
Figure 3. Illustration of Acoustic Predictors. Scatterplots of (a) vowel F1/F2 dispersion vs. WER and (b) pitch range vs. QA 
F1, with regression lines and 95% CIs. 

 

 
Figure 3: Illustration of Acoustic Predictors 

Practical Interpretation 

Taken together, the results define measurable tolerance boundaries for connected-speech reduction in 
conversational TTS. Moderate reduction combined with adequate prosody preserves naturalness while maintaining 
comprehension; excessive reduction or overly rapid rate causes cascading ASR and LLM misinterpretations. A 
minimal clarification mechanism restores performance efficiently, suggesting a practical design for self-repairing 
chatbots that balance natural fluency with pedagogical clarity. 

DISCUSSION AND IMPLICATIONS 

Overview 

This study set out to model how learners might parse connected-speech reductions in AI-mediated dialogue—
without involving human participants. By examining degradation across the TTS → ASR → LLM pipeline, we 
operationalized comprehension as a measurable outcome of signal reduction, speech rate, and repair mechanisms. 
The findings confirm that (1) moderate reductions enhance naturalness with minimal cost, (2) severe reductions at 
high rates trigger rapid comprehension collapse, and (3) short, explicit clarifications substantially restore 
understanding. Together, these results shed light on both theoretical and applied questions in speech perception, 
AI conversation design, and pronunciation pedagogy. 

Theoretical Interpretation 

Reductions as a Psycholinguistic Boundary. From a psycholinguistic standpoint, connected-speech reduction 
represents a trade-off between articulation efficiency and perceptual recoverability (Cutler, 2015; Ernestus & 
Warner, 2011). The computational findings mirror what has been reported in human listening experiments: once 
reduction exceeds a threshold, bottom-up information becomes insufficient and listeners must rely on top-down 
prediction (Mitterer & McQueen, 2009). The pipeline’s sharp rise in error beyond RI ≈ 0.8 suggests a mechanical 
equivalent of this boundary—the point at which even advanced ASR models fail to recover underlying forms. In 
this sense, the AI system behaves like a psycholinguistic surrogate, exhibiting similar limits in reconstructing 
masked or assimilated speech. 
Clarification as Real-Time Scaffolding. The strong effect of a single clarification turn parallels interactive 
alignment theory (Pickering & Garrod, 2021), which posits that dialogue partners continuously adapt 
representations to sustain mutual understanding. Here, a clarification prompt functions as a micro-alignment event: 
it resets the model’s internal representation, restores canonical mappings, and stabilizes subsequent turns. This 
confirms prior evidence that short, explicit reformulations support comprehension better than implicit corrections 
(Zhao et al., 2023; Li & Lee, 2024). For pedagogy, this finding suggests that learners could benefit from chatbots 
that pause, reformulate, and replay reduced phrases—mirroring the repair mechanisms of natural conversation. 
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Implications for L2 listening and CALL 

Reduction-Aware AI Tutoring. Listening comprehension in L2 learning often fails not at the lexical level but at 
the interface between phonetic and lexical decoding (Field, 2005; Cauldwell, 2018). An AI tutor equipped with 
reduction modeling and real-time clarification can serve as a safe training environment where learners are exposed 
to authentic speech phenomena while receiving immediate reformulations. Instead of artificially clear “teacherese,” such systems 
could progressively adjust reduction degree to match learner proficiency—aligning with adaptive difficulty 
principles (Kim & Bradlow, 2021). Our results define concrete acoustic thresholds: reductions up to moderate 
levels (RI ≤ 0.8) preserve comprehension, whereas more extreme compression should trigger clarification routines. 
 
Using Machine Metrics as Pedagogical Proxies. The computational pipeline demonstrates that machine 
comprehension metrics (WER, QA F1, BERTScore) correlate with the points of perceptual breakdown previously 
identified in human studies (Räsänen & Alku, 2024). This supports a pragmatic, scalable alternative for preliminary 
testing: before deploying listening materials to learners, designers can run them through an ASR–LLM pipeline to 
gauge relative difficulty. Such automated intelligibility screening can inform curriculum design, ensuring that 
learners encounter challenging but recoverable reductions. 

Implications for Speech Technology 

Towards Reduction-Aware Synthesis. Modern neural TTS prioritizes naturalness but often ignores the 
functional limits of intelligibility (Jouvet & Laprie, 2023; Tan et al., 2024). Our Reduction–Robustness Curve (RRC) 
provides an empirical diagnostic for balancing both goals. Developers can tune synthesis engines by monitoring 
where WER or semantic accuracy collapses, optimizing parameters to maintain human-like fluidity without 
crossing perceptual boundaries. The curve can also serve as a benchmark for cross-voice consistency—ensuring 
that reduction profiles remain pedagogically valid across different synthetic speakers. 
 
Repair-Aware Conversational AI. Clarification routines, though simple, substantially improved comprehension 
metrics. This aligns with trends in self-repairing dialogue systems (Zhao et al., 2023) and suggests that educational 
chatbots should integrate micro-clarifications as default behavior. Technically, an ASR confidence threshold 
(≈0.85) can trigger reformulation, followed by canonical playback and contextual re-entry—a low-cost intervention 
with measurable learning potential. 

Broader Research Implications 

The success of a no-participant computational model challenges the traditional assumption that perceptual 
studies must rely exclusively on human data. While human validation remains essential for fine-grained cognitive 
interpretation, machine proxies enable rapid hypothesis screening across languages, accents, and speech styles 
(Leong et al., 2023). Such models can complement human studies by mapping out parameter spaces—identifying 
where reductions, rates, or prosodic cues are likely to cause difficulty—before resources are committed to full-
scale listening experiments. Moreover, the open-access corpus and scripts released with this study invite replication 
and cross-linguistic adaptation, allowing researchers to extend the benchmark to other L2 contexts or to 
multimodal systems incorporating gesture and visual grounding. 

Limitations 

This study’s strengths—automation, scalability, and control—come with constraints. Machine comprehension 
is an approximation of human perception; while error patterns correlate, they are not identical. Additionally, the 
synthetic voices used here represent English in general American style; results may differ for other dialects or for 
L2 learners with distinct phonotactic expectations. Finally, the clarification intervention was limited to a single-
turn repair. Future work should explore adaptive clarification sequences and integrate learner modeling to simulate 
individualized exposure trajectories. 

Concluding Remarks 

By quantifying how connected-speech reductions challenge AI comprehension, this study indirectly illuminates 
how human learners experience the same phenomenon in real-time conversation. The findings point to a 
convergence of applied linguistics, speech technology, and AI pedagogy: understanding reductions is not merely 
about hearing faster or clearer—it is about designing systems that know when and how to clarify themselves. Reduction-
aware, repair-capable chatbots could thus become powerful allies in developing the next generation of intelligent 
pronunciation and listening tutors. 
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CONCLUSION 

This study set out to explore how connected-speech reductions influence comprehension in AI-mediated 
conversation, using a computational rather than human-participant approach. By systematically varying reduction 
degree, speech rate, and clarification behavior in a TTS–ASR–LLM pipeline, the research revealed measurable 
thresholds of intelligibility that mirror well-established psycholinguistic findings. Specifically, comprehension 
remains stable under moderate reduction but deteriorates sharply beyond a critical point (RI ≈ 0.8), where even 
state-of-the-art systems misinterpret reduced tokens. A brief, explicit clarification turn restores much of the lost 
understanding, underscoring the pedagogical and technological potential of self-repair mechanisms. 

The results carry implications for three domains. First, in applied linguistics, they provide empirical evidence 
that reductions can be modeled and evaluated through computational proxies before conducting human trials—
saving time and ensuring stimulus quality. Second, in speech technology, the proposed Reduction–Robustness Curve 
offers a diagnostic framework for balancing naturalness and intelligibility in neural TTS systems. Third, for 
language pedagogy, the study demonstrates how conversational AI can serve as both model and tutor—exposing 
learners to authentic reductions while offering immediate clarification and reformulation. 

Future research should extend this framework to multilingual contexts, testing whether reduction thresholds 
vary by phonological system or L1 background. Incorporating human listener validation would also allow 
calibration of machine metrics against real perceptual data, refining the predictive power of computational 
benchmarks. As synthetic voices and conversational agents become ubiquitous in education, the ability to control, 
measure, and repair reductions will become central to designing trustworthy, intelligible, and pedagogically sound 
AI speech. In short, minding the gaps in connected speech is no longer only a task for listeners—it is a design 
responsibility for the intelligent systems that now speak and teach beside us. 
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