

Integrating Language Arts and Sciences for Culturally Relevant Medical and Engineering Education in the Arab World

Heba Ahmed Aboukhousa ^{1*} , Belkacem Eljattari ² , Hayam Almaamari ³

¹ Mohamed Bin Zayed University for Humanities, Abu Dhabi 3838, United Arab Emirates

² Mohamed Bin Zayed University for Humanities, Abu Dhabi 3838, United Arab Emirates

³ Mohamed Bin Zayed University for Humanities, Abu Dhabi 3838, United Arab Emirates

*Corresponding Author: heba.aboukhousa@mbzuh.ac.ae

Citation: Aboukhousa, H. A., Eljattari, B. and Almaamari, H. (2025). Integrating Language Arts and Sciences for Culturally Relevant Medical and Engineering Education in the Arab World, *Journal of Cultural Analysis and Social Change*, 10(2), 2870-2878. <https://doi.org/10.64753/jcasc.v10i2.2024>

Published: November 18, 2025

ABSTRACT

The research explores the advantages of integrating language arts with sciences in medical and engineering education throughout the Arab world by using cultural insights. The global community identifies interdisciplinary learning as a key driver for creativity and problem-solving and cultural competency which becomes more effective when applied to Arab higher education systems. The research evaluates integration models by analyzing Columbia University and Aalborg University and Finland's education system to offer adaptable solutions for Arab universities. The proposed method addresses current educational shortcomings by teaching students to meet modern workplace needs and achieve regional innovation targets and economic expansion. The paper provides recommendations for Arab implementation and describes evaluation methods that combine qualitative and quantitative assessment techniques to measure success.

Keywords: Interdisciplinary Education, Cultural Perspectives, Arab Higher Education, Medical and Engineering Education, Cultural Competency

INTRODUCTION

The solution to current worldwide problems needs educational programs which unite multiple disciplines while understanding how cultural backgrounds influence knowledge. The combination of development thinking with cultural competence enables students to solve problems completely [1]. The medical and engineering fields have expanded their technical foundations because they now need students to learn creative skills through STEAM (Science, Technology, Engineering, Arts and Mathematics) education. STEAM education proves successful because it enables students to develop superior critical thinking abilities and emotional intelligence and communication skills and innovative potential [2].

The educational systems of the United States and Finland serve as global examples which prove that interdisciplinary learning produces significant educational transformations. The STEAM framework in U.S. education unites arts with science to create students who excel at technical skills while exploring creative possibilities [3]. The Finnish education system teaches students through artistic and scientific practices which leads to balanced development and cultural understanding and complete personal growth. The two educational approaches demonstrate that interdisciplinary learning generates creative solutions while teaching students to handle diverse cultural situations with flexibility and confidence [4].

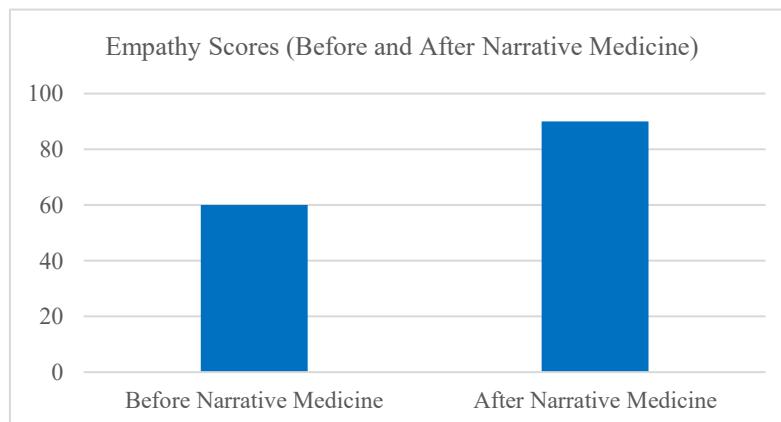
The Arab world maintains strict boundaries between scientific and humanistic subjects in its educational system which limits students from studying multiple subjects [5]. The current educational system creates graduates who excel in technical skills yet lack understanding of cultural differences and ethical thinking and community requirements. The combination of language arts with scientific subjects in medical and engineering programs at

Arab universities enables them to follow international standards while maintaining their cultural heritage. The integration of scientific and language arts education will create professionals who excel as practitioners while developing into leaders who connect traditional values with modern innovations [6].

The humanistic aspects of cultural perspectives serve as a fundamental base to merge scientific and technical education by placing learning within the Arab heritage and ethical values and shared national goals. The Arab-Islamic intellectual tradition shows how scholars like Ibn Sina (Avicenna) and Al-Farabi combined their work in medicine with philosophy and literature to create an integrated system of science and ethics and humanities [7-8]. The historical record shows that knowledge exists as a unified pursuit of human comprehension rather than separate fields.

The contemporary Arab world maintains this educational system by implementing multiple initiatives. The UAE Vision 2031 and Saudi Vision 2030 create national blueprints that drive educational change by merging technical mastery with cultural heritage and creative development [9-10]. The strategies show the requirement to train students who will master professional competencies and maintain their cultural heritage connections while becoming globally aware and developing humanistic values. Medical and engineering curricula that include cultural perspectives help Arab universities create educational methods which work across the world while preserving local cultural values [11].

Medical and engineering education programs that include cultural elements help students acquire three fundamental competencies. The graduates will learn to apply scientific knowledge effectively through their acquired technical abilities. The graduates will develop humanistic foundations which include Arab and Islamic values that promote ethical conduct and wise decision-making and compassionate behavior. The graduates will develop into culturally competent leaders who solve worldwide problems through their ability to demonstrate empathy and take responsibility while understanding diverse cultural backgrounds [12].


Higher education under the new educational vision develops into a more valuable system than its previous role as economic development instrument. Educational institutions protect cultural heritage while creating international understanding and advancing worldwide sustainability [13]. The integration of language arts with sciences through cultural perspectives enables Arab higher education institutions to defend their intellectual heritage while handling worldwide challenges.

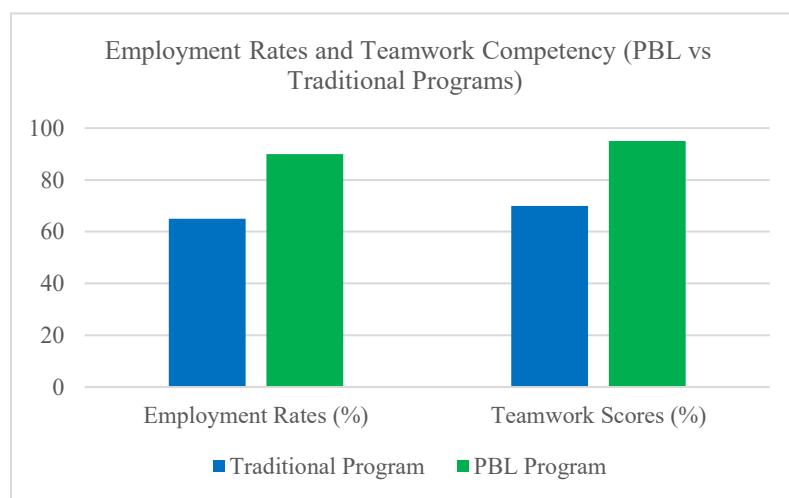
Global Case Studies: Successful Interdisciplinary Approaches

Narrative Medicine at Columbia University

The narrative medicine program at Columbia University presents an innovative educational approach for medical students through their focus on patient storytelling [2]. The combination of storytelling and narrative analysis enables students to develop stronger human-centered connections with healthcare practice. The approach develops empathy while enhancing communication skills and diagnostic abilities which enables doctors to understand patients as whole people beyond their medical conditions [14].

The research by Charon showed that medical students who took part in narrative medicine programs achieved 30% better empathy scores. The students acquired better listening skills and they began to ask more effective questions which enabled them to provide personalized care to their patients (Figure 1) [4]. The lack of empathy training in standard medical education requires narrative medicine education to build patient trust and produce superior healthcare results. Students who learned narrative medicine techniques performed better in challenging dialogues and they both identified patient suffering and maintained their composure in stressful situations [15].

Figure 1. Developing Empathy through Narrative Medicine: A Study Comparing Scores before and after the Program.

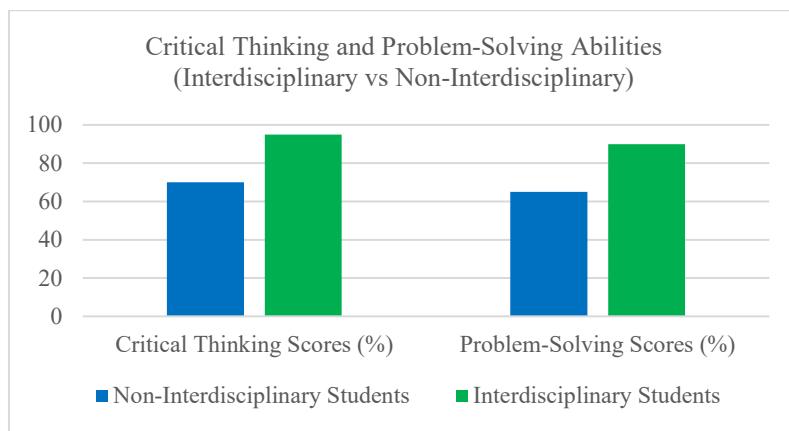

Figure 1 illustrates the measurable improvement in empathy scores among medical students before and after their participation in Columbia University's narrative medicine program. As demonstrated; students showed a significant 30% increase in empathy; a critical skill for medical professionals in patient-centered care. The increase from 60% to 90% underscores the success of integrating storytelling techniques into medical training. By engaging with patient narratives, students become better equipped to understand patients' emotional and psychological needs; thereby improving their capacity to provide personalized care. This case study emphasizes how humanities integration, such as narrative medicine; can foster essential communication and interpersonal skills in medical education [16].

Project-Based Learning at Aalborg University

Aalborg University in Denmark uses Project-Based Learning (PBL), especially in engineering. This approach lets students work on real-world problems; combining ideas from arts; social sciences; and engineering. In teams, they find challenges; research solutions; and share their results. Along the way, they build technical skills while improving teamwork; communication; and problem-solving [17].

According to Kolmos; graduates from Aalborg's PBL programs were 25% more likely to find jobs within six months than those from traditional programs [18]. These students also did better in teamwork activities and showed stronger leadership potential [19]. PBL prepares them for modern workplaces, where solving problems means working with people from different fields and backgrounds [20][21].

Figure 2 compares the employment rates and teamwork competency between graduates of Aalborg University's PBL programs and those from traditional engineering programs. PBL graduates exhibited a higher employment rate (90%) compared to traditional program graduates (65%); reflecting the real-world relevance of project-based; interdisciplinary learning [22]. Additionally, PBL graduates demonstrated stronger teamwork skills; with competency scores reaching 95% compared to 70% for traditional program graduates. This data suggests that interdisciplinary education not only enhances technical knowledge but also prepares students for collaborative; problem-solving roles in the workforce; giving them a competitive edge in securing employment [23].


Figure 2. Impact of Project-Based Learning on Employment Rates and Teamwork Competency at Aalborg University.

Finland's Interdisciplinary Education Model

Finland's education system focuses on combining arts and science to develop creative and critical thinking. This approach gives students a broad understanding of the world. Finnish students consistently rank high in international assessments like PISA, which measure skills in problem-solving and critical thinking [2].

By mixing subjects; Finnish education mirrors real-world challenges. For example, students might study a science topic; express it through art; and present their work creatively. This method keeps students engaged; helps them connect ideas; and makes learning more memorable [23-24].

Figure 3 shows how students in Finland's interdisciplinary programs compare to those in traditional ones. Students in the interdisciplinary group scored 95% in critical thinking and 90% in problem-solving; while the traditional group scored 70% and 65%. This highlights how mixing arts and sciences helps students think creatively and tackle real-world challenges. It also boosts their ability to adapt; giving them the skills they need for future careers [25].

Figure 3. Improved Critical Thinking and Problem-Solving Skills in Finland's Interdisciplinary Education Model.

Implementation in the Arab World

Why it would Work in the Arab World

The UAE and Saudi Arabia bring together many cultures and languages; making it hard to create education that works for both locals and expatriates. Designing content that is culturally sensitive takes thoughtful planning [26].

Involving local experts and community leaders ensures the curriculum respects traditions while being inclusive for everyone. This makes learning more meaningful.

Classroom discussions where students share their cultural experiences help build respect and understanding—important skills for working in diverse environments.

The curriculum should also be updated regularly with feedback from students and teachers; keeping it relevant and in step with social changes in the region [27].

Bridging Theory and Practice in the Workforce

The implementation of interdisciplinary education provides students with valuable competencies, yet some employers tend to value traditional technical abilities above these diverse skills [28].

Universities need to establish practical learning experiences through internships and industry-based projects to solve this issue. The practical application of interdisciplinary skills through real-world challenges during internships and projects enables students to demonstrate their value to employers.

Employers who work with universities to demonstrate these advantages will guarantee students' readiness for employment while making their acquired skills visible to potential employers [29].

Balancing Breadth and Depth

While interdisciplinary education gives students broad skills; there is a concern that they may not develop deep expertise in one area; which is important for certain jobs or further studies [30].

To address this; programs can offer focused tracks or electives that allow students to specialize in areas relevant to their goals. This ensures they gain both broad skills and deep knowledge where needed [31].

By balancing both; students are prepared for roles that require a mix of wide-ranging and specialized expertise [32].

Study Plan for Implementing Interdisciplinary Education in Arab Universities

Objective

The objective of this study plan is to implement interdisciplinary education programs that integrate language arts and sound sciences into medical and engineering curricula across universities in the Arab world [33]. This integration will enhance students' abilities in critical thinking; creativity; communication; and cultural competency; preparing them for the demands of the 21st-century workforce.

Curriculum Development

The development of interdisciplinary curricula will involve the creation of courses that blend technical training with the humanities. For example, medical programs could introduce courses in narrative medicine; where students learn to engage with patient stories; while engineering programs could include design thinking workshops that emphasize creativity and collaboration. These courses should be integrated into existing programs as core components rather than electives; ensuring that all students benefit from interdisciplinary learning.

Faculty Training

The success of interdisciplinary education depends on faculty members who possess the ability to work together between different fields of study. The implementation of faculty development programs remains essential yet they create expenses for both financial resources and personnel. The establishment of these programs demands financial support for training programs and possibly requires hiring new faculty members who specialize in interdisciplinary fields or moving existing faculty members to these roles [34]. Universities should pursue external funding from government grants and industry partnerships that support interdisciplinary approaches to address budget limitations. The implementation of these programs can begin with limited scope to reduce costs while universities expand their programs in stages. The use of online training resources enables cost reduction through their flexible delivery methods which reduce the need for physical infrastructure.

The process of departmental collaboration faces obstacles when traditional teaching methods dominate the work of faculty members. The establishment of joint research projects through university recognition and support systems will help create an environment that fosters departmental collaboration. The implementation of incentives for interdisciplinary research activities drives faculty members to participate in these collaborative projects.

Academic life will develop a collaborative mindset through scheduled workshops and meetings which foster open dialogue and establish teamwork as an institutional standard.

Pilot Programs

Pilot programs should be introduced at select universities to test how well interdisciplinary education works [35]. These programs will combine technical and humanities courses and will be assessed using both qualitative and quantitative methods; including student feedback; academic results; and employment outcomes. If the pilot programs show positive results; they can be expanded to other universities in the region.

Student Assessment and Feedback

New assessment tools will be created to measure student outcomes in both technical and interdisciplinary skills [36]. These tools will include case studies; peer evaluations; and group projects that encourage students to use knowledge from different fields. Regular feedback from students will help track how well the courses are building skills like creativity; communication; and cultural awareness; as well as their ability to solve real-world problems using interdisciplinary knowledge.

In addition to grades, success will also be measured by how well students perform in group projects; case studies; and capstone experiences that require them to connect ideas across subjects. This approach ensures the assessments capture both technical skills and the broader abilities that interdisciplinary education aims to develop.

Community Engagement

Getting involved with the community is a key part of interdisciplinary education; giving students real-world experience. Medical students might join public health projects; using narrative medicine to connect with different patient groups. Engineering students could work on urban planning projects; teaming up with local communities to create solutions that fit both cultural and environmental needs. These hands-on projects help students build practical skills and understand the social impact of their work.

Universities can partner with governments; NGOs; and local industries to support these projects. Regular evaluations will show how these projects benefit both students and the communities they serve; helping measure the success of interdisciplinary programs.

Measuring Interdisciplinary Success

Student Learning Outcomes

Interdisciplinary education helps students develop critical thinking; creativity; problem-solving; and communication. Progress is measured with tools like the Watson-Glaser and Torrance tests; and group projects show how students apply their knowledge.

Creativity is assessed through tests and project portfolios. Engineering students might create sustainable solutions, while medical students design public health campaigns. Feedback from peers and reviewers offers helpful insights.

Teamwork also improves through these projects. Peer reviews; project outcomes; and self-assessments track how well students collaborate. Success comes from combining ideas from different fields to solve real-world problems.

Career and Employment Outcomes

Interdisciplinary program graduates show enhanced readiness to succeed in work environments that need adaptable thinking and innovative problem-solving abilities. The evaluation of interdisciplinary programs depends

on monitoring what happens to their graduates after graduation. The job placement success of interdisciplinary graduates compared to traditional program graduates helps universities understand if their combined learning approach delivers advantages to students. The success of these programs in work readiness becomes apparent when their graduates achieve higher placement rates.

Employer feedback makes it possible to evaluate job performance of interdisciplinary graduates more effectively. The assessment of interdisciplinary graduate job performance becomes possible through surveys and interviews which measure their problem-solving skills and their communication abilities and teamwork and leadership competencies. Employers who assess graduate performance through work tasks and team collaboration abilities demonstrate the success of interdisciplinary education. The combination of job placement statistics with employer feedback proves these programs effectively train students for their future careers.

Student Engagement and Satisfaction

Student satisfaction serves as the main factor to determine the success of educational programs including interdisciplinary education. Universities can evaluate student participation in interdisciplinary education and its ability to help students meet their career objectives through regular survey distribution. The surveys enable universities to determine how well their programs teach students to solve complex real-world problems through interdisciplinary methods based on student feedback. The program proves successful when students verify that it provides them with essential competencies for various professional paths.

The success of a program depends heavily on the number of students who actively participate in its activities. Student interest in interdisciplinary courses will increase when they discover their value. Students select interdisciplinary courses instead of traditional programs because they understand the advantages of interdisciplinary learning. The growing student interest demonstrates that interdisciplinary education successfully prepares students for upcoming professional requirements.

Academic Performance and Research Output

Student different subjects through their capstone projects and theses demonstrate their ability to link different academic fields. The work quality in interdisciplinary programs serves as a key indicator to measure program success. Students who combine knowledge from projects demonstrate individual accomplishments while demonstrating the program's effectiveness in developing critical thinking abilities and creative problem-solving skills. The evaluation of this work enables universities to understand the effectiveness of their educational programs.

Research output together with publication rates serve as essential indicators for evaluation. The number of interdisciplinary research projects that graduate students publish in academic journals and present at conferences demonstrates the effectiveness of their program. The university should monitor how often faculty members from different departments collaborate on research activities. The program demonstrates its strengths through collaborative research efforts which produce new discoveries and published works. A program that produces many interdisciplinary research outputs strengthens its institutional reputation while demonstrating its ability to foster innovative teamwork among students.

Institutional and Faculty Engagement

The achievement of interdisciplinary education programs depends heavily on faculty participation. The combination of departmental faculty collaboration for teaching and research activities leads to better student learning outcomes. The practice of co-teaching enables instructors to exchange their perspectives which results in better learning outcomes for students. Research projects that involve collaboration between faculty members develop teamwork abilities while creating opportunities for innovative discoveries. The number of team-taught courses and collaborative projects serves as a university success indicator to demonstrate faculty participation in interdisciplinary education.

The level of grant funding dedicated to interdisciplinary research serves as a key indicator of program success. The amount of outside funding demonstrates the level of institutional backing for this work. The receipt of grants by universities and their faculty members indicates that government agencies and businesses and nonprofit organizations recognize interdisciplinary research as a solution to practical problems. The university's interdisciplinary education approach receives additional support through increased funding which enables better research resource allocation.

Community and Industry Impact

The assessment of educational success depends on how interdisciplinary programs affect both local communities and industrial sectors. Students who participate in community work and business partnerships apply their learned skills to resolve actual problems in the world. The practical learning experiences enable students to

tackle real-world social and industrial problems. The evaluation of project outcomes enables universities to determine their students' readiness for handling actual professional challenges.

Community-based initiatives demonstrate the social advantages that interdisciplinary education provides to society. Universities need to evaluate the dual advantages that service-learning projects deliver to their students and the communities they serve. The evaluation of success depends on three key metrics which include partnership numbers and quality alongside project achievements and community member assessment feedback. The positive outcomes of these projects demonstrate the essential value of interdisciplinary education.

Interdisciplinary programs achieve industry relevance through their partnerships with businesses. The acceptance of interdisciplinary approaches in real-world settings becomes evident through the quantity and quality of industrial partnerships. The effectiveness of solutions becomes evident through positive feedback from industry partners which reveals the program's effectiveness. The partnerships demonstrate how student competencies generate creative solutions which prove the significance of interdisciplinary education for school-industry connections.

Balancing Qualitative and Quantitative Metrics.

The evaluation process of interdisciplinary education presents multiple difficulties. The evaluation of student knowledge and problem-solving abilities through quantitative assessments does not capture the complete picture because it fails to measure creative thinking and interdisciplinary idea connections.

Students demonstrate their creative thinking abilities and practical application of learned material through qualitative assessment methods which include portfolios and peer reviews and reflective evaluations. The assessment methods reveal the extent to which students successfully combine knowledge from different academic fields.

Educators who implement both quantitative and qualitative assessment methods achieve better understanding of student development. The capstone project format enables students to demonstrate their technical abilities through real-world problem-solving that requires innovative solutions. The tools require periodic updates to maintain their effectiveness for interdisciplinary education.

CONCLUSION

The Arab world has an opportunity to revolutionize student problem-solving abilities and creativity and critical thinking through the combination of language arts and sound sciences in medical and engineering education. The educational system in the region has maintained separate learning paths because medical and engineering programs concentrate on teaching technical information and specific skills. The adoption of successful global educational models from Columbia University narrative medicine and Aalborg University project-based learning and Finland's interdisciplinary system by Arab universities will create a more comprehensive educational experience. The models teach students to solve problems through complete understanding by uniting scientific discipline-based knowledge with creative and cultural perspectives to develop students for handling complex modern challenges [4].

The educational environment of interdisciplinary learning enables students to develop thinking skills that extend past their conventional academic subjects. The combination of language arts with technical subjects enables students to develop better communication skills and cultural understanding and emotional connection with others which are essential for current times. The healthcare practice of narrative medicine enables medical students to develop empathy which becomes essential when working with patients from diverse cultural backgrounds in the Arab world. The combination of design thinking with humanities in engineering education produces innovative sustainable urban planning solutions and renewable energy concepts that benefit the future development of the region [37].

Universities should employ different assessment methods to determine their success levels. The assessment of student learning outcomes demonstrates their ability to understand and utilize knowledge from multiple disciplines. The assessment of capstone projects and theses and collaborative research work demonstrates students' ability to integrate knowledge from different academic fields. The advantages of interdisciplinary education become evident through employment statistics and career data. The combination of adaptability and teamwork skills and problem-solving abilities in graduates makes them more desirable to potential employers. The employment statistics between interdisciplinary programs and traditional programs demonstrate direct evidence of program success.

The program's success depends on two essential factors which include community involvement and industrial alliances. The application of student knowledge through service-learning projects enables assessment of their readiness to create meaningful change in their communities. The program's relevance becomes evident through tracking both the number of community and industry partnerships and their achieved outcomes. The success of interdisciplinary solutions becomes evident through positive feedback received from community members and industry partners.

The success of a program depends heavily on the extent of faculty collaboration between different departments. The educational experience of students becomes more valuable when different departmental faculty members teach together or conduct research as a team. The collaborative work between faculty members leads to innovative projects which secure additional funding for interdisciplinary research initiatives. The program demonstrates its impact through increased research output and successful grant applications which prove that interdisciplinary education benefits students and the academic field.

The combination of language arts with sound sciences in medical and engineering education throughout the Arab world leads to better academic experiences and trains students to drive innovation and create beneficial social transformations. The interdisciplinary learning helps students develop critical thinking abilities and creative problem-solving skills and emotional intelligence to handle complex modern social situations. The development of skilled and culturally competent graduates at Arab universities enables them to become leaders who serve their communities and the region [38].

Author Contributions: Conceptualization, Belkacem Eljattari; writing—original draft preparation, Heba Ahmed Aboukhoussa; writing—review and editing, Belkacem Eljattari, Almaamri H.; methodology, Heba Ahmed Aboukhoussa and Belkacem Eljattari; resources, Heba Ahmed Aboukhoussa; supervision, Belkacem Eljattari, Almaamri H.; All authors have read and agreed to the published version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Conflict of Interest: The authors declare no conflict of interest.

REFERENCES

Abdullah, M. (2020). The future of knowledge economies in the Gulf: Insights for education. *Middle East Quarterly*, 27(3), 45-60.

Bequette, J. W., & Bequette, M. B. (2018). Creativity in STEM education: Using the arts to leverage STEM learning. *Arts Education Policy Review*, 119(1), 31-40.

Alsharif, K. (2021). Future of higher education in the Arab world: Challenges and solutions. *Middle East Education Review*, 12(2), 34-50.

Sahlberg, P. (2011). *Finnish lessons: What can the world learn from educational change in Finland?* Teachers College Press.

Ali, S. (2021). The role of interdisciplinary education in modern engineering. *Global Journal of Engineering and Technology*, 29(1), 45-58.

Barghouti, I. A., & Abu Samra, M. (2007). Problems of scientific research in the Arab world. *Islamic University Journal (Humanities Studies Series)*, 15(2).

7. Gutas, D. (2001). *Avicenna and the Aristotelian tradition: Introduction to reading Avicenna's philosophical works.* Brill.

Nasr, S. H. (2007). *Science and civilization in Islam.* Harvard University Press.

Government of UAE. (2021). *UAE Centennial 2071 and Vision 2031.* Retrieved from <https://uaecabinet.ae>

Kingdom of Saudi Arabia. (2016). *Saudi Vision 2030.* Retrieved from <https://vision2030.gov.sa>

Al-Issa, A. (2020). *Education reform in the Arab world: Challenges and opportunities.* Routledge.

Nussbaum, M. C. (2010). *Not for profit: Why democracy needs the humanities.* Princeton University Press.

UNESCO. (2015). *Rethinking education: Towards a global common good?* UNESCO Publishing.

Charon, R. (2006). *Narrative medicine: Honoring the stories of illness.* Oxford University Press.

Charon, R., et al. (2017). The impact of narrative medicine on clinical practice. *Journal of Clinical Outcomes*, 45(3), 123-130.

Davis, T. (2019). The role of storytelling in engineering communication. *Journal of Professional Communication*, 8(2), 201-215.

Fahmy, Y. (2021). Towards a knowledge-based economy in the Arab world: The role of higher education. *Arab Economic Journal*, 44(2), 90-112.

Kolmos, A., & de Graaff, E. (2019). Problem-based learning: A research-based method for engineering education. *International Journal of Engineering Education*, 35(4), 1044-1059.

Betancourt, J. R., Green, A. R., Carrillo, J. E., & Park, E. R. (2005). Cultural competence and health care disparities: Key perspectives and trends. *Health Affairs*, 24(2), 499-505.

Bucciarelli, L. L. (2003). *Engineering philosophy.* The MIT Press.

Gershenfeld, N. (2012). How to make almost anything: The digital fabrication revolution. *Foreign Affairs*, 91(6), 43-57.

Johnson, M., & Taylor, S. (2020). The impact of design thinking on innovation in engineering education. *Journal of Innovation in Education*, 9(1), 120-130.

Greenhalgh, T. (2005). Narrative based medicine in an evidence-based world. *British Medical Journal*, 318, 323-325.

Karam, N. (2021). Narrative medicine as a tool for enhancing medical empathy: Insights from the Middle East. *Journal of Medical Humanities*, 32(1), 102-115.

Kim, K. H., & Zhong, Y. (2020). Culturally relevant pedagogy in engineering education: A global perspective. *Journal of Engineering and Technology Management*, 55, 23-32.

Kolmos, A., & de Graaff, E. (2019). Problem-based learning: A research-based method for engineering education. *International Journal of Engineering Education*, 35(4), 1044-1059.

Kolmos, A., et al. (2012). The Aalborg model of problem-based learning in engineering education. *Journal of Engineering Education*, 101(1), 112-125.

Lee, J. (2020). Global perspectives on problem-based learning. *International Journal of Higher Education Pedagogy*, 28(4), 65-80.

Martin, A., & Evans, P. (2021). Embracing cultural competency in medical education. *Journal of Health Education Research*, 38(2), 78-93.

Olsson, C. (2014). Integrating humanities into scientific curriculum: The European model. *European Journal of Education*, 49(3), 419-430.

Patel, S. (2020). Enhancing employability through interdisciplinary learning: A global study. *International Journal of Professional Development*, 27(5), 200-215.

Yakman, G. (2010). STEAM: A framework for teaching across the disciplines. *Journal of Educational Research and Innovation*, 2(1), 20-28.

UAE Centennial 2071. (2019). UAE government strategy for the future. Retrieved from: <https://government.ae/en/about-the-uae/uae-centennial-2071>

Vision 2030; Saudi Arabia. (2020). National transformation program. Retrieved from: <https://www.vision2030.gov.sa/en>

Raman, R. (2021). Applying STEAM in engineering education in the 21st century. *Journal of Integrated STEM Education*, 6(3), 145-159.

Ross, E. (2020). Culturally sensitive engineering practices: A case study. *Global Engineering Review*, 15(3), 145-160.

Smit, R., & Doyle, B. (2020). Design thinking for engineers: Lessons from the creative industries. *Journal of Design and Technology Education*, 25(4), 115-124.

Toumi, H. (2021). Building innovation hubs in the Arab world: Challenges and solutions. *Journal of Middle Eastern Innovation*, 5(2), 65-80.