

The Influence of Artificial Intelligence on Consumer Purchasing Decisions in the Digital Era: Case on Generation Z in Emerging Country

Ari Pradhanawati¹, Robetmi Jumpakita Pinem^{1,2}

¹Department of Business Administration, Universitas Diponegoro, Indonesia

²Pinem Green and Digital Lab, Indonesia

*Corresponding Author:

Citation: Pradhanawati, A., & Pinem, R. J. (2025). The Influence of Artificial Intelligence on Consumer Purchasing Decisions in the Digital Era: Case on Generation Z in Emerging Country. *Journal of Cultural Analysis and Social Change*, 10(3), 1862–1873. <https://doi.org/10.64753/jcasc.v10i3.2685>

Published: December 02, 2025

ABSTRACT

The world is experiencing significant changes in terms of technology. One of them is artificial intelligent which has a significant role in recent years. Generation Z, as a generation that is very familiar with digital transformation and the internet, shows potential in using AI to make purchasing decisions. This research focuses on how Generation Z in China and Indonesia use artificial intelligence to search for information and reviews of desired products, making it easier to determine which products to purchase. There are several factors that influence consumers to use AI in decisions to purchase a product, namely perceived usefulness, perceived ease of use, and social media usage. This research uses a quantitative methodology and an online questionnaire to gather data on 200 respondents. The result of the research show that perceived ease of use and perceived usefulness have a positive influence on attitude toward using AI. However, social media usage does not have a significant influence on attitude toward using AI. Then, attitude toward using AI has a positive and significant influence on behavioral intention to using AI.

Keywords: Artificial Intelligence, Purchasing Decision, Digital, Generation Z

INTRODUCTION

Artificial intelligence has played a significant role in recent years, including in consumer purchasing decisions (Khatri, 2021). The development of increasingly sophisticated technology has made many breakthroughs that are much different than past decade (Dmitrievich et al., 2024). Artificial intelligence is able to help ease human work by providing assistance such as analysis and recommendations for needs or solutions sought by artificial intelligence (Baig & Yadegaridehkordi, 2024; Subbaiah et al., 2024).

Generation Z is the generation that uses the internet the most—the generation most familiar with the internet and digital information (Babu, Md. Asaduzzaman and Yusuf, Kazi Md. and Lima, Eni and Jaman, Shekh Md. Sahiduj and Sharmin, 2024). Generation Z is often called the digital natives' generation because it is very close to smartphones, social media, and e-commerce platforms. Generation Z is the most intense and rapid in adopting new technology, including various types of social media and digital platforms.

The young generation, who are very native to the digital world, have enormous potential in utilizing artificial intelligence in reviewing various types of products or recommending products they want to purchase (Dr. G Manikandan & Dr. G Bhuvaneswari, 2024). The role of artificial intelligence is to provide input to consumers about suitable products according to their needs, including reviewing products that artificial intelligence recommend (Thamma et al., 2024). Openness of information and information sources on the internet influences Generation Z to look for detailed information on each product.

Currently, we are in a digital era that is very open, including selling and buying products. Offline stores, which usually carry out the conventional buying and selling of products, have changed to e-commerce, which allows buyers to choose one product from various stores at the same time without being limited by time and space (Reinartz et al., 2019). Currently, people are busy, and time efficiency encourages people to purchase products online. Currently, e-commerce is increasingly transnational, allowing consumers to buy products from other countries on one e-commerce platform (Rosário & Raimundo, 2021).

E-commerce visitors in Indonesia every month on e-commerce platforms in Indonesia are very high. The most visited e-commerce site in Indonesia is Shopee, with 227.6 million visitors in one month, followed by Tokopedia with 95.6 million visitors, Lazada with 43.6 million visitors, and Blibli with 23.1 million visitors. The number of visitors looking for information and comparing one product with another to find one that suits the buyer's needs.

Today's convenience provides a lot of information so that digital natives try to be efficient to save time and get the best product according to their needs. The abundance of information also creates confusion for potential buyers in e-commerce (Thangavel et al., 2022). e-commerce visitors in China with a very large number of visitors with the same conditions, and many products will cause confusion for the digital native generation (Thangavel & Chandra, 2024).

China and Indonesia, as emerging markets, have enormous potential with large populations. Digital advances such as artificial intelligence, which are very rapid, provide benefits for consumers in e-commerce and offline buyers (Rashid & Kausik, 2024). Consumers can take advantage of artificial intelligence in searching for products or reviewing the products they want so that they will be much more effective in searching for the many and varied products in e-commerce (Adawiyah et al., 2024).

Digitalization must also be supported by the technology available in a country; China and Indonesia have different technological conditions. Based on the 2024 Network Readiness Index (NRI), Indonesia for technology consisting of access, content, and future technologies is ranked 27th out of 133 countries with a score of 56.08. Technology in Indonesia is already excellent compared to other countries, but it still really needs to improve access, content, and future technologies because the score is still not very good.

Technological infrastructure is an important factor in e-commerce; the role of government is crucial in the success of technological development in a country. Indonesia itself has experienced an increase in access to technology, which continues to develop. The distribution of technological infrastructure is becoming more evenly spread throughout Indonesia (Susilowati et al., 2025). Indonesia, as a country that is very open to technology, has a lot of digital technology works from various social media and includes very diverse artificial intelligence and e-commerce products.

Based on the 2024 Network Readiness Index (NRI), China for technology consisting of access, content, and future technologies is ranked 12th out of 133 countries with a score of 65.94. Technology in China is developing very rapidly. China is one of the countries that is very concerned with technological developments. China also launched artificial intelligence that will compete with ChatGPT, namely Deepseek. China is a country that is able to create new technology with the same function as other countries' technological products.

Technological developments in both China and Indonesia include artificial intelligence. Generation Z is a digital native generation with the habit of shopping both online in e-commerce and offline with a number of goods from various shops in e-commerce and online, so they need tools to speed up searches and information that suits their needs (Bunea et al., 2024). Artificial intelligence is able to provide information about recommended products, information and reviews of products, making it easier and more precise to match the product needed (Bunea et al., 2024; Dwivedi et al., 2023).

This research focuses on how Generation Z in China and Indonesia use artificial intelligence to search for information and reviews of desired products, making it easier to determine which products to purchase (Bunea et al., 2024). Generation Z, which is a digital native generation that always uses social media, also has an influence on the use of artificial intelligence, apart from being useful and easy to use artificial intelligence (Ashrafuzzaman et al., 2022; Brahma & Dutta, 2020).

LITERATURE REVIEW

Technology Acceptance Model dan Behavioral Intention Using Artificial Intelligence

The adoption of artificial intelligence is becoming increasingly interesting to discuss, especially the factors that influence consumers to use AI in decisions to purchase a product, both in e-commerce and offline stores (Kai-ming au & Enderwick, 2000; Schorr, 2023). The Technology Acceptance Model (TAM) in relation to behavioral intention in using AI has begun to be developed using various types of research. TAM itself was developed by Davis in 1989, used to apply AI technology acceptance (Davis, 1989).

The application of AI in consumer product searches has a positive relationship (Sohn & Kwon, 2020). In its application, TAM is influenced by two main factors, namely perceived usefulness and perceived ease of use (Brown et al., 2022). In this research, not only these two main factors are explored but also social media usage is added (Tunpornchai et al., 2023). Generation Z, who are digital natives, are perceived to be influenced by the use of social media, thereby influencing attitudes in using AI in decision making, such as when buying products both in e-commerce and in offline stores (Guerra-Tamez et al., 2024).

Perceived Usefulness

Artificial intelligence is one of the media that is widely used in the digital era. Perceived usefulness is one of the bases for increasingly massive use of AI because it is considered able to lighten the burden on users (Stöhr et al., 2024; Wang et al., 2023). Perceived usefulness has a positive relationship or influence on attitude toward AI. The use of AI makes the work of its users easier so it is considered very useful (Dr. A. Ameer Hussian, 2024a).

New technology such as artificial intelligence, in this case, how consumers both e-commerce and offline stores, can be used to choose appropriate products or review products to be purchased. The use of AI can recommend items as needed with the orders given so that you can easily get the information (Bolodeoku et al., 2022).

Perceived Ease of Use

The development of cross-sector artificial intelligence provides opportunities for increasingly important technological developments to be adopted. Technology that is easy to use will increase the chances of further adoption, artificial intelligence is currently one of the products of technology that is increasingly being used massively (Mariani et al., 2023). Ease of use provides opportunities for more and more people to use artificial intelligence (Shetty et al., 2020).

The ease of using artificial intelligence influences the user or has a positive effect on the user's attitude (Wu et al., 2024). In the field used in education, artificial intelligence users' perceived ease of use has a positive effect on attitude or attitude becomes positive thereby increasing behavioral intention to use artificial intelligence (Osman et al., 2024).

Social Media Usage

Social media has become one of the most popular communication tools in generation Z, which is the digital native generation (Mohamed et al., 2024). Social media has multifunction's as a source of information, entertainment, education, and even buying and selling transactions. In the TAM model, it is explained that social influence is one of the factors or social media that influences attitudes toward AI adoption (Dutot, 2014).

Several studies show that social media has a positive influence on attitudes toward AI adoption (Z. Li et al., 2024). Social media also provides a very positive role, through social media people learn about AI which also provides benefits in its use (W. Li & Zheng, 2024). Someone who uses social media by viewing AI content will have a positive influence on changing a positive attitude toward AI adoption (Shanmugasundaram & Tamilarasu, 2023; Shoukat et al., 2024).

Attitude toward using AI

By definition it can be explained that Attitude toward using AI is a person's attitude is either good or bad towards the use of technology. Attitude toward using is influenced by perceived usefulness and perceived ease of use (Kai-ming au & Enderwick, 2000). Attitude towards using artificial intelligence, the more positive attitude you have, the more you want to use AI and conversely, the more negative your attitude towards AI, the less you want to use AI. The digital native generation always wants to use technology to make work easier or to find information so that it will have a positive impact (Buhmann et al., 2024).

Attitude toward using AI has a positive influence on behavioral intention to use AI in information searches such as searching for product information and reviewing product information (Pham et al., 2024). Attitude towards AI can also mediate the relationship between perceived usefulness, perceived ease of use, and social media toward behavioral intention to use AI (Dr. A. Ameer Hussian, 2024b; Wu et al., 2024).

METHODS

This research is a quantitative approach with an explanatory research type that aims to see the relationship between variables. The research locations are in China and Indonesia. For respondents in this study, there were 200 respondents. Data collection techniques use questionnaires and interviews as primary data, and for secondary data, use reports from organizations, books, journals, and other reporting sources. The measurement scale questionnaire uses a Likert scale, namely Strongly agree (5), Agree (4), Neutral (3), Disagree (2), and Disagree (1). The data analysis is by using SmartPLS. The results of the questionnaire use a Likert scale, which will be coded,

tabulated, and tested using SmartPLS software and elaborated with the results of interviews conducted with several respondents to enrich the research results. The research results will be explained in two parts, namely demographic data, which provides a detailed description of the research respondents, and secondly, statistical results, which provide an overview of the results of tests of the relationship between variables.

RESULTS

Demographic Results

Table 1. Demographic Results.

Demographic	Item	Quantity	Percentase (%)
Gender	Female	67	67
	Male	33	33
Age	17 – 18 years old	24	24
	19 – 20 years old	71	71
	21 – 22 years old	4	4
	23 – 24 years old	1	1
Income	< Rp. 1.000.000	25	25
	Rp 1.000.001 - Rp 3.000.000	65	65
	Rp 3.000.001 - Rp 6.000.000	8	8
	> Rp. 6.000.000	2	2
Level of Education	Senior High School	17	17
	Bachelor's Degree	82	82
	Doctoral Degree	1	1
Type of Product/Service	Food	69	69
	Clothing	15	15
	Cosmetics	13	13
	Electronics	3	3
Place to Shop	E-Commerce	82	49
	Social Media	22	13
	Offline Store	62	37
Social Media	Facebook	2	1
	Instagram	63	36
	Tiktok	83	48
	Twitter	23	13
	Youtube	2	1
	Whatsapp	1	1

Demographic data shows that the majority of the respondents are female with 67% in total of respondents, while male respondents are 33%. This shows that there are more female respondents using AI to determine which product to purchase than male respondents.

In terms of age, based on demographic data indicates the majority of respondents aged 19-20 years old, representing 71% of the total respondents. Followed by respondents aged 17-18 years old (24%). It can be concluded that respondents aged 19-20 years old are the majority who use AI in choosing and determining purchases.

Based on demographic data that the majority of respondents have an income around Rp 1.000.001 - Rp 3.000.000, while 25% of respondents earn less than Rp. 1.000.000. This shows that the majority of respondents who use AI for selecting and determining purchases have a monthly income between Rp 1.000.001 - Rp 3.000.000.

Demographic data indicated that respondents have at least graduated from high school. The majority of the respondents (82%) have completed their bachelor's degree, 17% have graduated from high school, and 1% hold a doctoral degree. This concludes that respondents with bachelor's degree are more likely to use AI to determine their purchasing.

Demographic data shows that in total of 61,33% respondents tend to buy food, and then 15% respondents who buy clothing products. 13% respondents who buy cosmetics. And 3% who buy electronic products. This indicates that food becomes the type of products most frequently purchased by respondents.

In terms of place to shop, the demographic data shows that 49% of respondents tend to buy from e-commerce, followed by 37% of respondents who shop at offline store, while 13% of respondents use social media to purchase products. This indicates that e-commerce is the most preferred shopping place by respondents.

Based on demographic data on social media usage shows that 49% of respondents use TikTok to searching and provide information, then 36% of respondents use Instagram, while the other 13% respondents use Twitter. This indicates that TikTok is the most preferred social media for searching information about products.

Validity Test

Convergent Validity

This test is used to access the relationship between constructs and latent variables using the standardized loading factors and AVE (Average Variance Extracted) values. The data is considered valid if the relationship between the indicators and the latent variables reaches a value of 0.7 or higher

Table 2. Outer Loading Results.

	Attitude Toward Using AI	Behavioral Intention to Using AI	Perceived Ease to Use	Perceived Usefulness	Social Media Usage
X1.1				0.871	
X1.2				0.895	
X1.3				0.937	
X1.4				0.805	
X2.1			0.885		
X2.2			0.904		
X2.3			0.844		
X2.4			0.719		
X3.1					0.887
X3.2					0.894
X3.3					0.798
X3.4					0.874
X3.5					0.891
Y1		0.905			
Y2		0.779			
Y3		0.875			
Y4		0.914			
Z1.1	0.859				
Z1.2	0.887				
Z1.3	0.736				
Z1.4	0.899				

Table 3.3 shows the outer loading values obtained for the variables: perceived usefulness, perceived ease to use, social media usage, attitude toward using AI and behavioral intention to using AI has fulfilled all the requirements. This indicates that the 21 questionnaire items distributed to 200 respondents can be considered valid. Valid data can then be processed in the next stage by analyzing the AVE (Average Variance Extracted) scores, which must be above 0.5 be deemed valid (Fornell and Larcker, 1981). Table 3.4 shows the AVE score results

Table 3. AVE (Average Variance Extracted) Score Results.

Average Variance Extracted (AVE)	
Attitude Toward Using AI	0.719
Behavioral Intention to Using AI	0.757
Perceived Ease to Use	0.708
Perceived Usefulness	0.771
Social Media Usage	0.756

Table 3.4 shows that the AVE score for variable attitude toward using AI is 0,719, variable behavioral intention to using AI is 0,757, variable perceived ease to use is 0,708, variable perceived usefulness is 0,771, and variable social media usage is 0,756. It can be concluded that all variables meet the requirement for AVE score above 0.5 and therefore can be considered valid.

Discriminant Validity

Discriminant validity is used to assess the relationship between a construct and its indicators, as well as the relationship among different constructs, using the square root of the AVE value. The model is considered to have good discriminant validity if the square root of the AVE for each constructs is greater than its correlation with other constructs. Discriminant validity is evaluated using cross-loading values and the square root of AVE.

Table 4. Fornell Larcker Criterion Discriminant Validity.

	Attitude Toward Using AI	Behavioral Intention to Using AI	Perceived Ease to Use	Perceived Usefulness	Social Media Usage
Attitude Toward Using AI	0.848				
Behavioral Intention to Using AI	0.844	0.870			
Perceived Ease to Use	0.779	0.768	0.841		
Perceived Usefulness	0.816	0.813	0.805	0.878	
Social Media Usage	0.505	0.435	0.654	0.474	0.870

Table 4 presents the square root of the AVE for each construct, all of which are greater than the correlations between constructs. Attitude toward using AI variable has a square root of AVE 0,848 when correlated with itself where that score already above variable attitude toward using AI when correlated with behavioral intention using AI variables valued at 0.870, and then square root of AVE 0.841 with perceived ease to use variables. 0.878 with perceived usefulness variables, and 0.870 with social media usage variables.

A similar pattern is observed in the other variables, where the square root of AVE exceeds the inter-construct correlation coefficients. Therefore, the constructs of perceived ease to use, variabel perceived usefulness, attitude toward using AI dan variable behavioral intention to using AI can be considered valid, as they meet the criterion that the square root AVE should be greater than the correlation between constructs. It can also be concluded that the variables in this study demonstrate high discriminant validity and fulfill the necessary requirements. In addition, discriminant validity can also be confirmed through the cross-loading values between each indicator and its respective construct.

Table 5. Cross Loading Results.

	Attitude Toward Using AI	Behavioral Intention to Using AI	Perceived Ease to Use	Perceived Usefulness	Social Media Usage
X1.2	0.737	0.731	0.722	0.895	0.442
X1.3	0.730	0.734	0.774	0.937	0.463
X1.4	0.715	0.705	0.644	0.805	0.350
X2.1	0.725	0.745	0.885	0.819	0.439
X2.2	0.705	0.738	0.904	0.705	0.557
X2.3	0.665	0.665	0.844	0.667	0.556
X2.4	0.497	0.375	0.719	0.471	0.715
X3.1	0.366	0.325	0.592	0.382	0.887
X3.2	0.434	0.329	0.539	0.370	0.894
X3.3	0.360	0.326	0.471	0.329	0.798
X3.4	0.450	0.457	0.606	0.485	0.874
X3.5	0.540	0.428	0.615	0.467	0.891
Y1	0.780	0.905	0.669	0.757	0.327
Y2	0.672	0.779	0.650	0.627	0.498
Y3	0.725	0.875	0.697	0.704	0.381
Y4	0.757	0.914	0.661	0.735	0.325
Z1.1	0.859	0.708	0.770	0.697	0.516
Z1.2	0.887	0.754	0.663	0.735	0.448
Z1.3	0.736	0.603	0.462	0.514	0.211
Z1.4	0.899	0.783	0.710	0.788	0.490
X1.1	0.679	0.681	0.680	0.871	0.408

The cross-loading values indicate the highest loading relationship of an item its corresponding construct compared to other constructs. For item X1, the correlation with the perceived usefulness variables is 0,895. This cross-loading score is higher that its correlations with other variables, such as 0,737 with attitude toward using AI

variables, 0,731 with behavioral intention to using AI variables. This indicated that item X1 has a strong relationship with its intended variable.

The results for other constructs and their respective items show a similar pattern, where the cross-loading of an item with its own variable is higher than its correlation with other variables, and exceeds the 0.7 threshold. It can be concluded that discriminant validity has been achieved. High loading scores within a block of latent constructs, compared to loadings with other constructs, indicate that the indicators have a stronger relationship with their corresponding latent variable than with other latent variables.

Reliability Test

Reliability testing is used to measure the accuracy and consistency of an instrument in assessing a construct. It serves as evidence that the questionnaire items used are reliable and dependable. The more stable and consistent the responses, the more reliable the questionnaire is considered to be (Ghozali, 2013). In PLS-SEM, reliability is used to evaluate a construct with reflective indicators, which can be assessed through two methods: Composite Reliability and Cronbach's Alpha. A construct is considered reliable if the Cronbach's Alpha and Composite Reliability values exceed the threshold of 0.7 (Ghozali & Latan, 2016).

Table 6. Reliability Test Results.

	Cronbach's Alpha	Composite Reliability
Attitude Toward Using AI	0.868	0.910
Behavioral Intention to Using AI	0.892	0.926
Perceived Ease to Use	0.861	0.906
Perceived Usefulness	0.900	0.931
Social Media Usage	0.919	0.939

Table 6 shows that the Cronbach's Alpha and Composite Reliability scores for all four variables meet the required threshold, with all scores exceeding 0.7. The highest Cronbach's Alpha value is found in the social media usage variable at 0,919, while the lowest is in the perceived ease to use variables at 0,861. The highest Composite Reliability score is social media usage variable at 0,939, while the lowest in perceived ease to use variables at 0,906. These results indicate that the questionnaire items demonstrate high stability and consistency, and therefore, all four variables in this study can be considered reliable.

Path Coefficient

This section outlines the testing of each hypothesis formulated in this study, namely H1, H2, H3, H4, H5, H6 and H7. The following is the research model diagram.

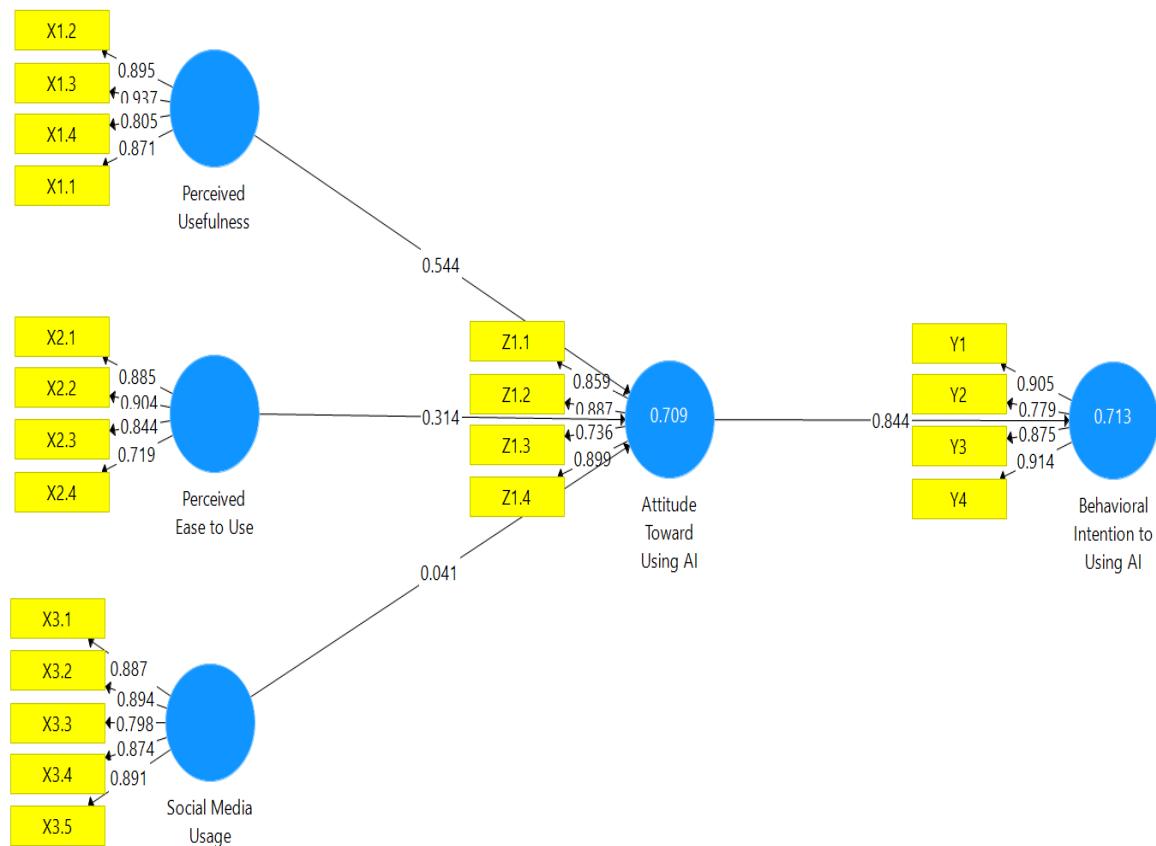


Figure 1. Research Model.

Based on Figure 3.1, this study includes four variables, which are formulated into three hypotheses. Hypothesis testing is necessary to provide empirical evidence for the proposed hypotheses. This test aims to determine the significant influence between variables by calculating the parameter coefficient scores and T-statistics using the bootstrapping method. The results of hypotheses testing can confirm the correlations between variables as formulated in the hypotheses. The following are the criteria for hypothesis testing:

- If the p-value < 0.05 and the T-statistic > 1.96, the hypothesis is accepted, and the relationship between the two variables is considered significant.
- If the p-value > 0.05 and the T-statistic < 1.96, the hypothesis is rejected, and the relationship between the two variables is considered not significant.

Hypotheses Testing

Table 7. Path Significance Tests.

Hypothesis	Original Sample	T-Statistics	P-Values	Conclusion
Attitude Toward Using AI -> Behavioral Intention to Using AI	0.844	26.613	0.000	H1 Accepted
Perceived Ease to Use -> Attitude Toward Using AI	0.314	2.254	0.024	H2 Accepted
Perceived Usefulness -> Attitude Toward Using AI	0.544	4.475	0.000	H3 Accepted
Social Media Usage -> Attitude Toward Using AI	0.041	0.659	0.510	H4 Rejected
Perceived Ease to Use -> Attitude Toward Using AI -> Behavioral Intention to Using AI	0.265	2.272	0.023	H5 Accepted
Perceived Usefulness -> Attitude Toward Using AI -> Behavioral Intention to Using AI	0.459	4.189	0.000	H6 Accepted
Social Media Usage -> Attitude Toward Using AI -> Behavioral Intention to Using AI	0.035	0.660	0.509	H7 Rejected

Original sample score of attitudes toward using AI variable on behavioral intention to using AI variables is 0,844, indicating a positive relationship. The obtained T-statistics is 26.613, which is greater than the critical t-value of 1.96, and the p-value is 0.000, which is less than the significance level of 0.005 (5%). This indicates that the attitude toward using AI variable has a positive and significant effect on the behavioral intention to using AI variable. Therefore, the first hypothesis is accepted.

Original sample score is 0,314 indicating a positive relationship. The obtained T-statistics is $2.254 > 1.96$ and P-value $0.024 < 0.005$. This indicates that the perceived ease to use variable has a positive and significant effect on the attitude toward using AI variable. Therefore, the second hypothesis is accepted.

The original sample score of perceived usefulness on attitude toward using AI is 0,544, indicating a positive relationship. The T-statistic obtained is $4.475 > 1.96$, and the p-value is $0.000 < 0.005$. This indicates that the perceived usefulness variable has a positive and significant effect on attitude toward using AI variable. Therefore, the third hypothesis is accepted.

The original sample score is 0,041, indicating a positive relationship. The T-statistic obtained is $0.659 > 1.96$, and the p-value is $0.510 > 0.005$. It can be concluded that the social media usage variable has no significant effect on the attitude toward using AI variables. Therefore, the fourth hypothesis is rejected.

The original sample score is 0,265, indicating a positive relationship. The T-statistic obtained is $2.272 > 1.96$, and the p-value is $0.023 > 0.005$. It can be concluded that the perceived Ease of Use has a positive and significant effect on Behavioral Intention to Use AI through Attitude Toward Using AI. Therefore, the fifth hypothesis is accepted.

The original sample score is 0,459, indicating a positive relationship. The T-statistic obtained is $4.648 > 1.96$, and the p-value is $0.000 > 0.005$. It can be concluded that the perceived usefulness has a positive and significant effect on attitude toward using AI through behavioral intention to using AI. Therefore, the sixth hypothesis is accepted.

The original sample score is 0,035, indicating a positive relationship. The T-statistic obtained is $0.660 > 1.96$, and the p-value is $0.509 > 0.005$. It can be concluded that the *social media usage* has a positive and significant effect on attitude toward using AI through behavioral intention to using AI. Therefore, the seventh hypothesis is accepted.

R-Square

The next stage is the R-Square test. R-Square is an initial step that must be conducted by calculating the R-Square value for each latent variable to assess the goodness-of-fit of the model. Changes in the R-Square score are used to explain the substantive influence between exogenous latent variables and endogenous latent variables. R-Square serves as a measure to evaluate the extent of the effect that independent variables have on dependent variables. According to Ghazali (2014), the R-Square test indicates whether the model in this study is classified as strong (when the value is equal to or greater than 0.75), moderate (between 0.26 and 0.74), or weak (when the value is equal to or less than 0.25).

Table 8. R-Square.

	R Square
Attitude Toward Using AI	0.709
Behavioral Intention to Using AI	0.713

The R-Square results presented in Table 3.7 show that perceived usefulness variables, perceived ease to use and social media usage has an influence on the attitude toward using AI variables at 0,709 or 70,9% while the remaining 29,1% explained by variables outside this study. Then R-Square results also show that perceived usefulness, perceived ease to use, social media usage, attitude toward using AI toward behavioral intention to using AI has an influence at 0,713 or 71,3%, while the remaining 28,7% explained by variables outside this study. This indicates that the influence falls into the moderate category

CONCLUSIONS

Generation Z as the fastest generation for adapting in the use of AI tends to use it in purchase decision especially in this digital era. This is supported by the result of hypotheses 1, that attitude toward using AI has a positive and significant effect on behavioral intention to using AI. On the other hand, this research also shows the influence of perceived ease of use on attitude toward using AI. This finding based on how easy it is to use and operate AI without any obstacle and easy to learn. Therefore, Hypotheses 2 show a positive and significant influence of perceived ease to use on attitude toward using AI. Not only perceived ease of use, but also the benefit of AI usage perceived by Generation Z can influences attitude toward using AI. AI offered various benefits

includes give products recommendation, help user to search any kind of needs in a minute and provide product review. This is aligned with the result of Hypotheses 3, which states that perceived usefulness has a positive and significant effect on attitude toward using AI.

Attitude toward using AI can also be influenced by social media usage where Generation Z tends to use more than one social media such as Tiktok, Instagram, Twitter, and so on. However, based on the result the use of social media is not strong enough to influence attitude toward using AI. therefore, Hypotheses 4 which states that social media usage has no significant influence on attitude toward using AI. attitude toward using AI can increase behavioral intention to using AI based on the ease that it's offered. Generation Z can utilize AI for assisting with product purchasing decisions. This inline with Hypotheses 5, which states that perceived ease of use has a positive and significant effect on behavioral intention to using AI through attitude toward using AI.

The result of Hypotheses 6 testing shows that perceived usefulness has a positive and significant effect on behavioral intention to using AI through attitude toward using AI. This is because the more AI offers benefits and advantages to Generation Z users, the stronger their behavioral intention to use AI. however, based on Hypotheses 7, social media usage has a positive but not significant effect on behavioral intention to using AI through attitude toward using AI. This indicates that even though Generation Z tends to use more than one social media, it is still not strong enough to influence the behavior to use AI through a positive attitude.

REFERENCES

Adawiyah, S. R., Purwandari, B., Eitiveni, I., & Purwaningsih, E. H. (2024). The Influence of AI and AR Technology in Personalized Recommendations on Customer Usage Intention: A Case Study of Cosmetic Products on Shopee. *Applied Sciences (Switzerland)*, 14(13). <https://doi.org/10.3390/app14135786>

Ashrafuzzaman, M., Rishat, A. S. A. H., Hossain, M. S., & Alam, M. T. (2022). The impact of social media and digital marketing on consumer behavior. *Handbook of Research on Consumer Behavior Change and Data Analytics in the Socio-Digital Era, October*, 275–294. <https://doi.org/10.4018/978-1-6684-4168-8.ch012>

Babu, Md. Asaduzzaman and Yusuf, Kazi Md. and Lima, Eni and Jaman, Shekh Md. Sahiduj and Sharmin, M. R. (2024). ChatGPT and Generation 'Z': A Study on the Usage Rates of ChatGPT. *Social Sciences & Humanities Open*, 10(March), 101163. <https://doi.org/10.1016/j.ssaho.2024.101163>

Baig, M. I., & Yadegaridehkordi, E. (2024). ChatGPT in the higher education: A systematic literature review and research challenges. *International Journal of Educational Research*, 127(March), 102411. <https://doi.org/10.1016/j.ijer.2024.102411>

Bolodeoku, P. B., Igbinoba, E., Salau, P. O., Chukwudi, C. K., & Idia, S. E. (2022). Perceived usefulness of technology and multiple salient outcomes: the improbable case of oil and gas workers. *Helijon*, 8(4). <https://doi.org/10.1016/j.helijon.2022.e09322>

Brahma, A., & Dutta, R. (2020). Role of Social Media and E-Commerce for Business Entrepreneurship. *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*, 3307, 01–18. <https://doi.org/10.32628/cseit206559>

Brown, S. A., Dennis, A. R., & Venkatesh, V. (2022). Predicting Collaboration Technology Use: Integrating Technology Adoption and Collaboration Research. *SSRN Electronic Journal*, January 2010. <https://doi.org/10.2139/ssrn.4061120>

Buhmann, K. M., Rialp-Criado, J., & Rialp-Criado, A. (2024). Predicting Consumer Intention to Adopt Battery Electric Vehicles: Extending the Theory of Planned Behavior. *Sustainability (Switzerland)*, 16(3). <https://doi.org/10.3390/su16031284>

Bunea, O. I., Corboş, R. A., Mişu, S. I., Triculescu, M., & Trifu, A. (2024). The Next-Generation Shopper: A Study of Generation-Z Perceptions of AI in Online Shopping. *Journal of Theoretical and Applied Electronic Commerce Research*, 19(4), 2605–2629. <https://doi.org/10.3390/jtaer19040125>

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly: Management Information Systems*, 13(3), 319–339. <https://doi.org/10.2307/249008>

Dmitrievich, S. A., Anatolyevna, V. A., Nurmagomedovich, R. Z., Yuryevich, R. E., & Ivanovich, O. A. (2024). A Study of the Impact of Artificial Intelligence on Consumer Decision Making. *Journal of Ecobehaviorism*, 3(6), 355–364. <https://doi.org/10.62754/joe.v3i6.4011>

Dr. A. Ameer Hussain, S. M. G. D. N. N. (2024a). Understanding AI Adoption: The Mediating Role of Attitude in User Acceptance. *Journal of Informatics Education and Research*, 4(2), 1664–1672. <https://doi.org/10.52783/jier.v4i2.975>

Dr. A. Ameer Hussain, S. M. G. D. N. N. (2024b). Understanding AI Adoption: The Mediating Role of Attitude in User Acceptance. *Journal of Informatics Education and Research*, 4(2). <https://doi.org/10.52783/jier.v4i2.975>

Dr. G Manikandan, & Dr. G Bhuvaneswari. (2024). Measuring the Influence of Artificial Intelligence (AI) on Online Purchase Decisions-In Case of Indian Consumers. *International Journal of Scientific Research in Science*,

Engineering and Technology, 250–259. <https://doi.org/10.32628/ijsrset2411122>

Dutot, V. (2014). Adoption of social media using technology acceptance model: The generational effect. *International Journal of Technology and Human Interaction*, 10(4), 18–35. <https://doi.org/10.4018/ijthi.2014100102>

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., ... Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. *International Journal of Information Management*, 71(March). <https://doi.org/10.1016/j.ijinfomgt.2023.102642>

Guerra-Tamez, C. R., Kraul Flores, K., Serna-Mendiburu, G. M., Chavelas Robles, D., & Ibarra Cortés, J. (2024). Decoding Gen Z: AI's influence on brand trust and purchasing behavior. *Frontiers in Artificial Intelligence*, 7. <https://doi.org/10.3389/frai.2024.1323512>

Kai-ming au, A., & Enderwick, P. (2000). A cognitive model on attitude towards technology adoption. *Journal of Managerial Psychology*, 15(4), 266–282. <https://doi.org/10.1108/02683940010330957>

Khatri, D. M. (2021). How Digital Marketing along with Artificial Intelligence is Transforming Consumer Behaviour? *International Journal for Research in Applied Science and Engineering Technology*, 9(VII), 523–527. <https://doi.org/10.22214/ijraset.2021.36287>

Li, W., & Zheng, X. (2024). Social Media Use and Attitudes toward AI: The Mediating Roles of Perceived AI Fairness and Threat. *Human Behavior and Emerging Technologies*, 2024. <https://doi.org/10.1155/2024/3448083>

Li, Z., Shi, J., Zhao, Y., Zhang, B., & Zhong, B. (2024). Indirect Media Effects on the Adoption of Artificial Intelligence: The Roles of Perceived and Actual Knowledge in the Influence of Presumed Media Influence Model. *Journal of Broadcasting and Electronic Media*, 68(4), 581–600. <https://doi.org/10.1080/08838151.2024.2377244>

Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. *Technovation*, 122(September 2022), 102623. <https://doi.org/10.1016/j.technovation.2022.102623>

Mohamed, E. A. S., Osman, M. E., & Mohamed, B. A. (2024). The Impact of Artificial Intelligence on Social Media Content. *Journal of Social Sciences*, 20(1), 12–16. <https://doi.org/10.3844/jssp.2024.12.16>

Osman, Z., Mohamad, R. K., & Kasbun, N. (2024). What Does it Take to Trigger Intention to Use Artificial Intelligence among Students in Higher Education Institutions? *International Journal of Academic Research in Business and Social Sciences*, 14(7), 1412–1429. <https://doi.org/10.6007/ijarbss/v14-i7/22004>

Pham, V. K., Pham Thi, T. D., & Duong, N. T. (2024). A Study on Information Search Behavior Using AI-Powered Engines: Evidence From Chatbots on Online Shopping Platforms. *SAGE Open*, 14(4), 1–18. <https://doi.org/10.1177/21582440241300007>

Rashid, A. Bin, & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. *Hybrid Advances*, 7(July), 100277. <https://doi.org/10.1016/j.hybadv.2024.100277>

Reinartz, W., Wiegand, N., & Imschloss, M. (2019). The impact of digital transformation on the retailing value chain. *International Journal of Research in Marketing*, 36(3), 350–366. <https://doi.org/10.1016/j.ijresmar.2018.12.002>

Rosário, A., & Raimundo, R. (2021). Consumer marketing strategy and e-commerce in the last decade: A literature review. *Journal of Theoretical and Applied Electronic Commerce Research*, 16(7), 3003–3024. <https://doi.org/10.3390/jtaer16070164>

Schorr, A. (2023). The Technology Acceptance Model (TAM) and its Importance for Digitalization Research: A Review. *International Symposium on Technikpsychologie (TePsy) 2023*, 55–65. <https://doi.org/10.2478/9788366675896-005>

Shanmugasundaram, M., & Tamilarasu, A. (2023). The impact of digital technology, social media, and artificial intelligence on cognitive functions: a review. *Frontiers in Cognition*, 2. <https://doi.org/10.3389/fcogn.2023.1203077>

Shetty, D. K., Shetty, S., Raj Rodrigues, L., Naik, N., Maddodi, C. B., Malarout, N., & Sooriyaperakasam, N. (2020). Barriers to widespread adoption of plug-in electric vehicles in emerging Asian markets: An analysis of consumer behavioral attitudes and perceptions. *Cogent Engineering*, 7(1), 1–15. <https://doi.org/10.1080/23311916.2020.1796198>

Shoukat, M. H., Elgammal, I., Selem, K. M., & Shehata, A. E. (2024). Fostering social media user intentions: AI-enabled privacy and intrusiveness concerns. *Spanish Journal of Marketing - ESIC*. <https://doi.org/10.1108/SJME-07-2023-0205>

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. *Telematics and Informatics*, 47, 101324. <https://doi.org/10.1016/j.tele.2019.101324>

Stöhr, C., Ou, A. W., & Malmström, H. (2024). Perceptions and usage of AI chatbots among students in higher

education across genders, academic levels and fields of study. *Computers and Education: Artificial Intelligence*, 7(June), 0–11. <https://doi.org/10.1016/j.caear.2024.100259>

Subbaiah, P. V., Jyothsna, M., Manjushree, P., & Kondamudi, S. G. (2024). Exploring the Influence of Artificial Intelligence (AI) on Online Purchase Decisions: In Case of Consumer's Prospective. *International Journal of Intelligent Systems and Applications in Engineering*, 12(10s), 13–20.

Susilowati, A. P. E., Rachmawati, R., & Rijanta, R. (2025). Smart village concept in Indonesia: ICT as determining factor. *Heliyon*, 11(1), e41657. <https://doi.org/10.1016/j.heliyon.2025.e41657>

Thamma, N., Anywatnapong, W., Tunpornchai, W., & Saetang, C. (2024). Transforming E-Commerce: Artificial Intelligence Effect on Purchase Decision And Happiness. *SSRN Electronic Journal*, 7(March), 133–144. <https://doi.org/10.2139/ssrn.4803985>

Thangavel, P., & Chandra, B. (2024). Digital Immigrants Versus Digital Natives: Decoding Their E-commerce Adoption Behavior. *SAGE Open*, 14(4), 1–19. <https://doi.org/10.1177/21582440241282437>

Thangavel, P., Pathak, P., & Chandra, B. (2022). Consumer Decision-making Style of Gen Z: A Generational Cohort Analysis. *Global Business Review*, 23(3), 710–728. <https://doi.org/10.1177/0972150919880128>

Tunpornchai, W., Thongprayoon, W., & Tarickul, W. (2023). Technology Readiness for Artificial Intelligence Influences Individual's Purchasing Intention on Social Media through Technology Acceptance Model. *SSRN Electronic Journal*, 6(May), 27–34. <https://doi.org/10.2139/ssrn.4541969>

Wang, C., Ahmad, S. F., Bani Ahmad Ayassrah, A. Y. A., Awwad, E. M., Irshad, M., Ali, Y. A., Al-Razgan, M., Khan, Y., & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. *Heliyon*, 9(8), e18349. <https://doi.org/10.1016/j.heliyon.2023.e18349>

Wu, H., Wang, Y., & Wang, Y. (2024). "To Use or Not to Use?" A Mixed-Methods Study on the Determinants of EFL College Learners' Behavioral Intention to Use AI in the Distributed Learning Context. *International Review of Research in Open and Distributed Learning*, 25(3), 158–178. <https://doi.org/10.19173/irrodl.v25i3.7708>