

Evaluating The Impact of Data-Driven Decision Making on Market and Financial Performance in Healthcare Companies

Vikram Jeet¹, Nasir Ali², SayeeduzZafar Qazi³, Afroze Nazneen⁴, Zafrul Allam⁵

¹University of Jeddah, College of Business, Department of Business Administration, Jeddah, Saudi Arabia; Email: vjram@uj.edu.sa

²University of Jeddah, College of Business, Department of Business Administration, Jeddah, Saudi Arabia; Email: nashab@uj.edu.sa

³College of Business, University of Business of Technology, Jeddah, Saudi Arabia; Email: sayeed@ubt.edu.sa

⁴University of Jeddah, College of Business, Department of Business Administration, Jeddah, Saudi Arabia; Email: anazneen@uj.edu.sa

⁵University of Bahrain, Department of Management & Marketing, College of Business, Kingdom of Bahrain; Email: zallam@uob.edu.bh

*Corresponding Author: vjram@uj.edu.sa

Citation: Jeet, V., Ali, N., Qazi, S., Nazneen, A., & Allam, Z. (2025). Evaluating The Impact of Data-Driven Decision Making on Market and Financial Performance in Healthcare Companies. *Journal of Cultural Analysis and Social Change*, 10(3), 1980–1991. <https://doi.org/10.64753/jcasc.v10i3.2704>

Published: December 02, 2025

ABSTRACT

The study investigates the role of business analytics in enhancing organizational performance within healthcare companies. The study highlights the elements of business analytics such as data collection & management, analytical tools & techniques, technology & infrastructure, and compliance & ethics are crucial for driving informed decision-making and strategic planning. A quantitative approach was employed, surveying 162 professionals across various managerial levels in healthcare companies. A structured questionnaire was designed to measure the use of business analytics tools and techniques, and their perceived impact on organizational performance across different dimensions such as financial performance and market performance. The data was analyzed using SPSS and Smart PLS 4 software. To address the study's objective, regression analysis is performed to examine the relationship between the use of business analytics and various organizational performance metrics. The study concluded that data collection and management are the cornerstones of financial and market performance in the healthcare sector, with compliance and ethics. Analytical tools and techniques also provide a meaningful supplementary contribution. The results support the importance of data integration approaches as a basis for the long-term profitability and success of healthcare companies in the market. Though compliance and ethics are also essential for stability in regulation and investor confidence, they do comparatively little to influence competitive positioning within the market. The findings underscore the critical role of business analytics in improving financial performance and market performance. This study provides empirical evidence of the significant impact of business analytics on organizational performance in the healthcare sector, highlighting its potential to transform decision-making processes and strategic planning.

Keywords: Organisational Performance, Financial Performance, Market Performance, Business Analytics, and Healthcare Industry

INTRODUCTION

Business Analytics (BA) has become an important tool for enhancing business performance in a rapidly changing and competitive world. Business analytics is the application of statistical analysis, predictive modelling, data mining, and machine learning on historical and real-time data. Utilization of these sophisticated methods will ensure organizations' improvement in business decision-making, operational excellence, customer service, and

profitability. Business analytics is gradually finding its way into organizations due to the growing big data and improving computational power. A study published in 2023 reported by Gartner indicated that more than 85% of organizations have seen an increase in investment in analytics to enable critical decision-making. This trend also reflects the increasing acknowledgment of data being a strategic hub in modern enterprises. In addition, the finance, healthcare, retail, and manufacturing sectors are leveraging analytics for pattern recognition, process optimization, and predictive modelling (Davenport & Harris, 2022). Analytical capability is a well-known driver of performance, and evidence shows that organizations with strong business analytics capabilities outperform their peers. For example, in a study done by McKinsey & Company, they discussed that data-driven companies are 23 times more likely to be able to acquire customers, six times as likely to be able to keep them, and 19 times as likely to be profitable (Manyika et al., 2021). The study also highlighted that embedding analytics in the culture and decision-making framework of organizations would mean that its benefit in terms of performance can exist.

In the context of performance measurement, business analytics facilitates real-time monitoring through dashboards, key performance indicators (KPIs), and predictive analytics. This enables organizations to proactively address inefficiencies and capitalize on opportunities. Additionally, with the integration of artificial intelligence (AI) and machine learning, predictive and prescriptive analytics have evolved, enabling organizations to simulate scenarios and prescribe optimal solutions. Despite its transformative potential, challenges such as data quality, skill gaps, and privacy concerns persist. Addressing these challenges requires a strategic approach, including investing in talent, ensuring data governance, and fostering an analytics-driven culture. The interplay of these factors underscores the critical role of business analytics in navigating uncertainty and achieving sustained growth.

Performance is a multidimensional concept implies that an organization reaches its stated objectives and goals (Samuel & Udo, 2023). Within the healthcare sector, it includes market performance, financial performance, employee performance, and sustainability performance. According to Vibhakar et al. (2023), financial attainment is repeatedly evaluated using indicators like revenue growth, profit margins, and return on investment. Operational effectiveness, product development, and innovation are all mechanism of organizational accomplishment (Handoyo et al., 2023). Indeed, market performance evaluates the company's competitive posture, market share, and customer satisfaction (Kharub and Sharma, 2020). Business analytics is increasingly crucial in enhancing financial performance by driving data-informed decisions, optimizing processes, and predicting trends. Brigham & Houston (2019) suggested that management teams analyse financial performance to identify areas for improvement and make informed strategic decisions.

REVIEW OF LITERATURE

The healthcare industry sector is a challenging and highly regulated space, and the ability to leverage data and derive analytical insights can create a real competitive edge. Such an evolution makes business analytics one of the most important drivers of success for organizational performance, providing tools and methodologies to convert volumes of data into valuable insights. This literature review explores the multifaceted impact of business analytics on organizational performance within the healthcare industry. It specifically focuses on the essential sub-variables of business analytics like data collection and management, analytical tools and techniques, technology and infrastructure, human resources and skills, strategic alignment and management, performance measurement, and compliance and ethics. It works through the impact of business analytics on organizational performance, exploring its impact on financial, operational, market, employee, and sustainability performance to finally provide an overall assessment of their impact on organizational performance.

Appropriate data gathering and management are the foundations of successful business analytic initiatives (Tuboalabo et al., 2024). To derive accurate and actionable insights, high-quality data is needed. (Janssen et al., 2020). Strong data governance frameworks contribute to data accuracy, consistency, and accessibility. In contrast, in the pharmaceutical industry, data come from clinical trials, R&D, manufacturing processes, and market interactions, and integrating and managing that data is difficult but critical (Sarkis, 2021). The complexity and volume of data necessitate sophisticated data management systems capable of handling big data and ensuring compliance with regulatory standards.

A major part of business analytics is the choice of analytical tools and techniques, which is also important (Duan et al., 2020). For example, predictive analytics allows predictions of future market trends based on historical data available, which have proven extremely useful for predicting market demand and optimizing supply chains in the pharmaceutical industry (Nguyen et al., 2022). This type of analytics offers concrete suggestions to improve decision-making, including drug pricing, marketing strategies, and more. The use of machine learning and artificial intelligence has been made to improve business analytics operations, thus providing better and more accurate predictions for healthcare solutions (Quazi, 2022).

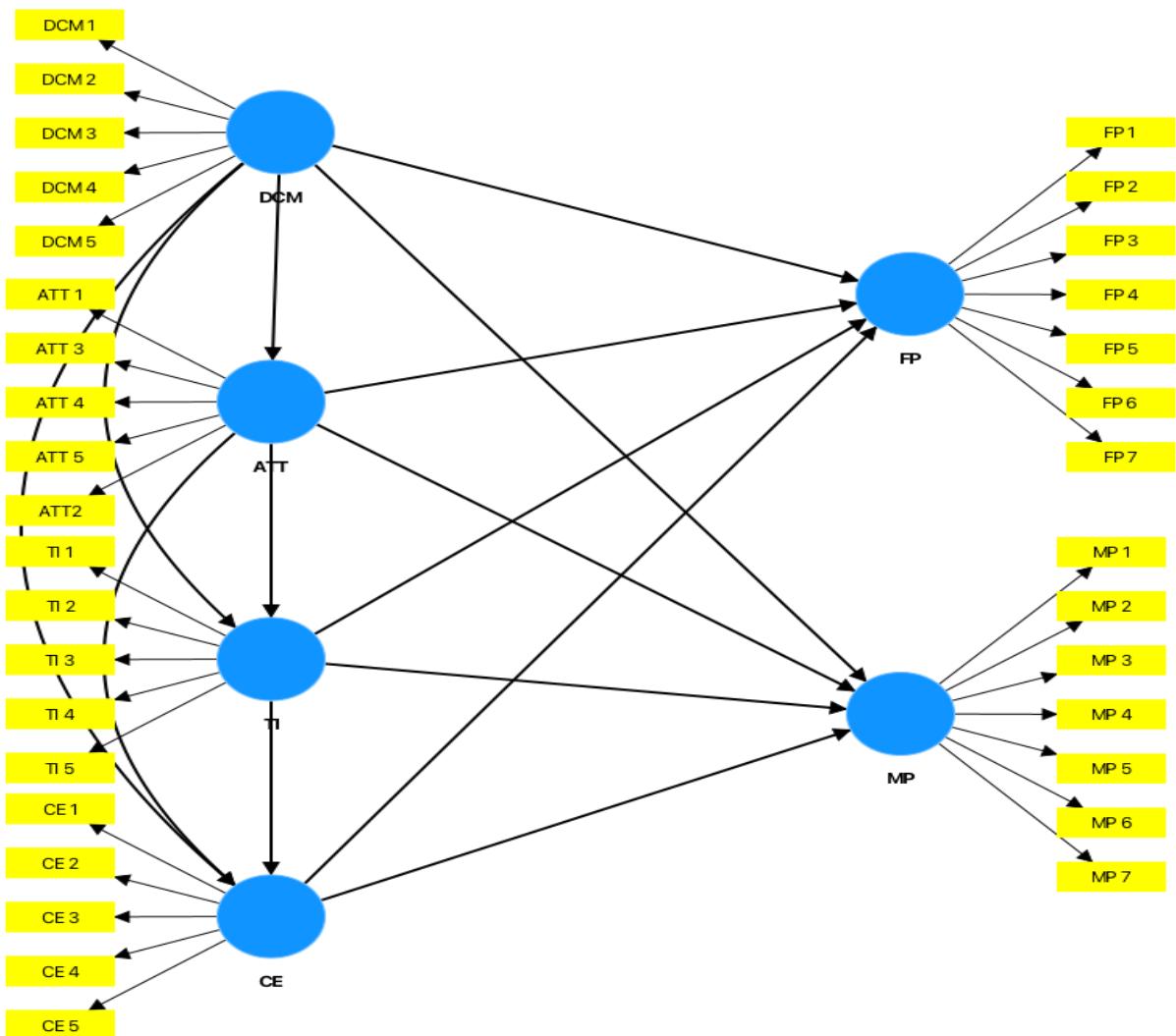
Business analytics can leverage both physical and cloud data management resources. Big data technologies and cloud computing have transformed data storage, processing, and analysis (Aceto et al., 2020). For Pharma

companies, it is essential to invest in advanced analytics platforms and tools to allow these large datasets to be processed and provide up-to-the-minute insights. Organizations are finding cloud-based solutions competitive to manage data and analysis of data as they boost the scalability and flexibility of the organization (Amajuovi et al., 2024).

Healthcare companies that use business analytics should comply with regulators and follow high ethical standards. Strict compliance with data privacy and security regulations is required when dealing with sensitive data (e.g., patient information, proprietary research) (Thapa & Camtepe, 2021). Compliance with regulations like the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection Regulation (GDPR) is crucial for trust and avoiding legal consequences. Ethics can additionally contribute to transparency on how the data is utilized and the protection of stakeholder interests (Tzimas & Dmetriadis, 2021).

Davenport & Harris (2017) suggested that business analytics significantly enhances decision-making by leveraging real-time data insights, leading to improved financial performance. Further research indicated that firms adopting advanced analytics tools experience a 10-15% increase in profit margins due to efficient resource allocation enabling predictive modelling, allowing businesses to anticipate market trends and adjust strategies. Business analytics facilitates risk management by identifying potential financial pitfalls through predictive analysis. Research reveals that companies utilizing advanced analytics reduce financial losses (Chen et al., 2012) which demonstrates the importance of analytics in bringing financial performance under control in the face of market volatility. Business analytics enhances financial decision-making by integrating real-time data and predictive tools, enabling firms to optimize investment strategies and resource allocation (Agu et al., 2024; Saini & Rajesh, 2024). Business analytics emerged as a decisive tool for the finance industry, permitting financial organizations to get useful insights, make data-driven choices, and optimize their operations. Financial institutions can improve their performance with predictive modelling, risk analysis, and operational optimization (Saini, 2024).

The impact of business analytics on financial performance is a primary area of interest for healthcare companies. Studies have shown that effective use of analytics can lead to cost savings, revenue growth, and improved profit margins (Lee et al., 2022). In the healthcare industry, analytics can optimize pricing strategies, enhance sales forecasting, and identify new revenue streams. Organizations that leverage analytics to improve financial decision-making are better positioned to achieve financial stability and growth (Zhu et al., 2021).


Business analytics enhances market performance by providing insights into customer behavior, market trends, and competitive dynamics. In the healthcare industry, analytics can inform targeted marketing campaigns, optimize sales strategies, and improve customer relationship management (Shahbaz et al., 2021). Predictive analytics helps organizations anticipate market changes and respond proactively, thereby improving market share and customer acquisition. Companies that leverage analytics for market intelligence can achieve significant competitive advantage and market growth (Ranjan & Foropon, 2021).

The reviewed literature focuses on the vital role of business analytics on performance driving market and financial performance of healthcare businesses. evaluating the several facets of business analytics and their impact on market and financial performance. Combining the data collection methods and management, advanced analytical tools and techniques, technological infrastructure, and compliance with ethical standards to optimize the driver of performance for maintaining competitiveness in a dynamic industry.

Research Objective and Hypothesis

The primary objective of the study is to identify the impact of using business analytics on organizational performance within the healthcare industry. We formulated the flowing research hypothesis statements and the conceptual model to achieve the study's stated objective.

- H1a. Data collection and management have a significant positive influence on financial performance.*
- H1b. Data collection and management have a significant positive influence on market performance.*
- H2a. Analytical tools and techniques have a significant positive influence on financial performance.*
- H2b. Analytical tools and techniques have a significant positive influence on market performance.*
- H3a. Technology and infrastructure have a significant positive influence on financial performance.*
- H3b. Technology and infrastructure have a significant positive influence on market performance.*
- H4a. Compliance and ethics have a significant positive influence on financial performance.*
- H4b. Compliance and ethics have a significant positive influence on market performance.*

Figure 1. Conceptual Model.

RESEARCH METHODOLOGY

The research methodology for this study involves a quantitative approach to analyze the impact of business analytics on organizational performance in the healthcare industry. A structured survey on a five-point Likert scale was forwarded to 162 professionals working in various healthcare companies at different managerial levels. The survey includes questions designed to measure the use of business analytics tools and techniques, and their perceived impact on organizational performance across different dimensions such as financial performance and market performance. A self-administered questionnaire for independent variable business analytics has been constructed. The data set consists of four dimensions named as, Data Collection and Management (DCM), Analytical Tools and Techniques (ATT), Technology and Infrastructure (TI), and Compliance and Ethics (CE). Each independent variable consists of five questions. The two dependent variables, market performance (MP) and financial performance (FP), have seven questions for each.

The data collected from the survey is analyzed using SPSS and Smart PLS 4 software. Initially, a reliability analysis is conducted to ensure the consistency and dependability of the survey instruments. This is followed by descriptive statistics to summarize the key characteristics of the data, providing an overview of how business analytics is currently utilized in the industry. To address the study's objective, regression analysis is performed to examine the relationship between the use of business analytics and various organizational performance metrics. The regression model quantifies the impact of business analytics on performance indicators, enabling a deeper understanding of the effectiveness of analytics practices in the healthcare sector.

This methodology ensures a robust analysis of the data, providing valuable insights into the role of business analytics in enhancing organizational performance in the healthcare industry.

Data Analysis and Interpretation

To achieve the above-mentioned objective, firstly reliability analysis, then descriptive analysis and then regression analysis is applied.

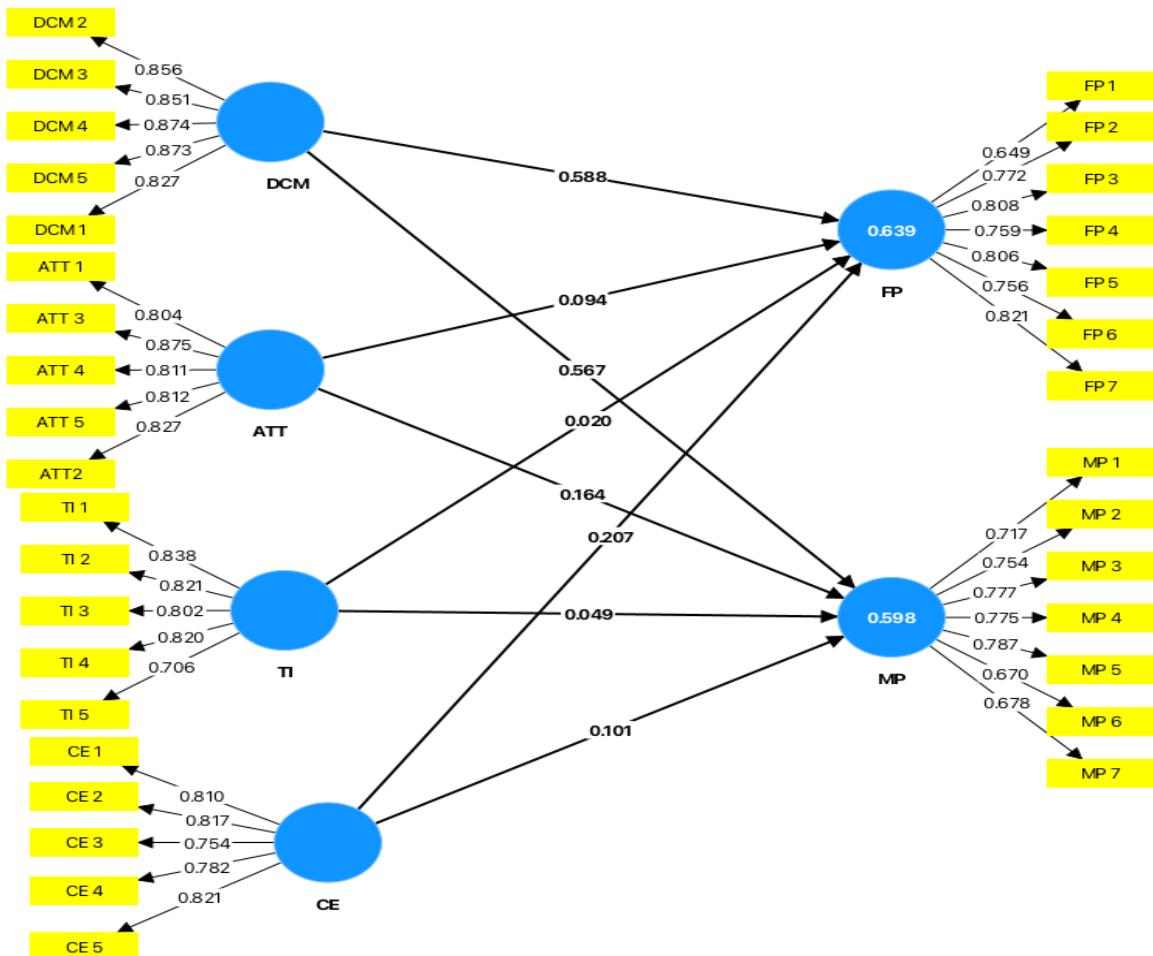


Figure 2. Measurement model and path coefficients.

Table 1. Descriptive statistics Summated Scale, showing Range, Minimum, Maximum, Mean, Sd., Skewness and Kurtosis.

	Minimum	Maximum	Range	Mean	Std. Deviation	Skewness	Kurtosis
DCM	5	25	20	15.62	5.565	-.134	-1.240
ATT	5	24	19	16.42	5.332	-.410	-1.061
TI	5	25	20	16.14	5.035	-.418	-.901
CE	5	25	20	16.07	5.074	-.170	-.943
FP	8	34	26	21.27	7.037	.075	-1.117
MP	9	33	24	21.23	6.628	.039	-1.151

The means of all the variables range from 15.62 (DCM) to 21.27 (FP), which suggests that TFP and TMP usually yield higher average values. Explore the relationship between the mean and observed ranges. However, the mean values are relatively consistent with the observed ranges, as higher mean values correspond to variables with higher minimum and maximum values. FP possesses the greatest standard deviation (7.037) which indicates its wider range and greater dispersion. MP at 6.628 maintains proximity with its ROM even as the latter maintains its wide discretion. The standard deviations for all other variables (DCM, ATT, TI, CE) were comparable (around 5), suggesting they are relatively low variation. The overall distribution of scores showed a moderate level of variations, symmetrical and flat FP and MP have broader ranges and higher mean values compared to other outliers, and have other, more uniform characteristics for DCM, ATT, TI, and CE. Such analysis can lead to a deeper investigation of the relationships between these variables and their significance.

Table 2. Construct Reliability and Validity Statistics.

Constructs	Cronbach's alpha	Composite reliability (rho_a)	Composite reliability (rho_c)	Average variance extracted (AVE)
DCM	0.883	0.884	0.915	0.682
ATT	0.857	0.864	0.897	0.635
TI	0.909	0.91	0.932	0.733
CE	0.884	0.89	0.91	0.592
FP	0.861	0.869	0.893	0.545
MP	0.858	0.868	0.898	0.638

To measure internal consistency reliability the values above 0.7 are generally acceptable. All constructs exceed the 0.7 threshold, indicating good internal consistency. To evaluate the overall reliability of constructs, thresholds of 0.7 for acceptability and 0.9 indicating excellent reliability were used. Where all constructs meet or exceed 0.7 confirming a strong reliability. To measure the degree to which a construct explains the variance in its indicators. An average value above 0.5 indicates adequate convergent validity. All constructs meet the minimum threshold of 0.5, confirming sufficient convergent validity.

Table 3. Factor Loading of Summated Scale.

Factors	ATT	CE	DCM	FP	MP	TI
ATT 1	0.804					
ATT 3	0.875					
ATT 4	0.811					
ATT 5	0.812					
ATT2	0.827					
CE 1		0.81				
CE 2		0.817				
CE 3		0.754				
CE 4		0.782				
CE 5		0.821				
DCM 1			0.827			
DCM 2			0.856			
DCM 3			0.851			
DCM 4			0.874			
DCM 5			0.873			
FP 1				0.649		
FP 2				0.772		
FP 3				0.808		
FP 4				0.759		
FP 5				0.806		
FP 6				0.756		
FP 7				0.821		
MP 1					0.717	
MP 2					0.754	
MP 3					0.777	
MP 4					0.775	
MP 5					0.787	
MP 6					0.67	
MP 7					0.678	
TI 1						0.838
TI 2						0.821
TI 3						0.802
TI 4						0.82
TI 5						0.706

Most items have loadings exceeding the value of the threshold point, ensuring strong relationships with their respective constructs. The overall factor structure supports reliable measurement, with minor areas for refinement.

Table 4. Showing Inter-Construct Correlations Matrix of variables studied (N=162).

	DCM	ATT	TI	CE	FP	MP
DCM	-					
ATT	.579**	-				
TI	.475**	.612**	-			
CE	.514**	.789**	.642**	-		
FP	.743**	.602**	.481**	.583**	-	
MP	.720**	.595**	.479**	.542**	.727**	-

Note: **. Correlation is significant at the 0.01 level (2-tailed).

It appears from Table 4 that, within the correlation matrix of the variable studied robust correlation was observed between DCM and FP ($r = 0.743$) followed by DCM and MP ($r = 0.720$). a strong correlation suggesting a close association between the variables studied. A highly significant relation was observed between ATT and CE ($r = 0.789$). A strong alignment between financial performance (FP) and market performance (MP), has been observed as (**$r = 0.727$**). At the same time, DCM shows a strong link with MP (**$r = 0.720$**), suggesting that decision-making is closely tied to market performance.

Table 5. Model Summary of Regression Analysis for Financial Performance of Healthcare Industries.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics		
					R Square Change	F Change	Sig. F Change
1	.743 ^a	.552	.549	4.727	.552	196.827	.000
2	.779 ^b	.607	.602	4.439	.055	22.369	.000

a. Predictors: (Constant), DCM.

b. Predictors: (Constant), DCM, CE.

Table 5 shows the outcome of regression analysis for financial performance. Data collection and management (DCM) appeared as a significant predictor of financial performance, explaining 55.2% of the variance in FP. This model is statistically significant at .001 levels, confirming that DCM is a significant contributor to FP. Adding compliance and ethics (CE) to the model improves the coefficient of determination $R^2 = 0.607$, suggesting CE adds explanatory power. The change in R^2 (0.055) was found statistically significant ($p<0.001$), demonstrating that CE independently makes a substantive contribution to financial performance. The regression analyses show that DCM is the best predictor for financial performance and most of the variance is explained. The model is extremely improved with the addition of CE, which proves that it is a supplement. Furthermore, R^2 change alone accounted for a 5.5% variance in FP is attributed to the aforementioned factors, signifying their contribution towards improving the success of the healthcare industry. The results confirm the stated hypothesis H2a. Analytical tools and techniques have a significant positive influence on financial performance.

Table 6. Coefficient of regression for Financial Performance of Healthcare Industries.

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1	(Constant)	6.600	1.109	5.949	.000
	DCM	.939	.067	14.030	.000
2	(Constant)	3.271	1.257	2.601	.010
	DCM	.761	.073	10.382	.000
	CE	.380	.080	4.730	.000

a. Dependent Variable: FP.

The results of the regression coefficient for healthcare industries financial performance were shown in Table 6. DCM only describes a large proportion of the variance in FP ($\beta=0.743$ $\beta=0.743$). It is a strong, positive, and highly significant relationship, as ($t=14.030$, $p<0.001$ $t=14.030$, $p<0.001$). Both DCM and CE contribute positively to financial performance while CE alone contributed moderately ($\beta=0.274$, $t=4.730$, $p<0.001$ $\beta=0.274$, $t=4.730$, $p<0.001$)), indeed CE, enhances the model. Since the impact of DCM diminishes slightly ($\beta=0.602$ $\beta=0.602$) it still stands out as a more powerful predictor as compared to compared to CE.

Table 7. Model Summary of Regression Analysis for Market Performance of Healthcare Industries.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics	
					R Square Change	F Change
1	.720 ^a	.519	.516	4.612	.519	172.468
2	.752 ^b	.566	.561	4.393	.047	17.376

a. Predictors: (Constant), DCM.

b. Predictors: (Constant), DCM, ATT.

Table 7 shows the model summaries of regression analysis for market performance of healthcare industries. The coefficient of determination $R^2 = .519$ for DCM explains 51.9% of the variance associated with market performance. This model is highly statistically significant ($F\text{-Change} = 172.468$), illustrating the role of DCM in regulating market performance. When it adds attitude (ATT) to the model, R^2 increases from 0.519 to 0.566, which indicates that ATT alone accounted for 4.7% variance explained in the market performance of the healthcare company. However, ATT reduces the standard error (by 4.612 to 4.393), so our predictions are more accurate. This is statistically significant ($F\text{-Change} = 17.376$), suggesting ATT plays a significant role in market performance. The obtained results confirmed the proposed hypothesis H2b. that Analytical tools and techniques have a significant positive influence on market performance.

Data collection and management are critical factors in terms of market performance, as indicated by the considerable contribution of both models. This is in line with based on the anticipation that capable data accumulation and stewardship procedures straightforwardly affect a company's competitiveness and market survival. On the other hand, the availability of practical tools and techniques is significant, it does play a substantial role in enhancing the market performance. DCM frameworks should be a focus area for firms that want to fortify their market positioning. Product development, pricing strategies, and market entry are likely to have a direct correlation with making effective decisions. Domain expertise focused on performance optimization and maintaining the performance quality post-setup.

Table 8. Coefficient of regression for Market Performance of Healthcare Industries.

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1	(Constant)	7.832	1.083	7.235	.000
	DCM	.858	.065	13.133	.000
2	(Constant)	5.258	1.202	4.375	.000
	DCM	.674	.076	8.826	.000
	ATT	.332	.080	4.168	.000

a. Dependent Variable: MP.

Table 8 explain the coefficient of regression for market performance of healthcare industries. DCM alone has a strong and significant effect on market performance as: ($\beta=0.720$, $p<0.001$, $\beta=0.720$, $p<0.001$). The high unstandardized coefficient ($B=0.858$, $B=.332$) shows that DCM is a dominant factor in driving market performance. DCM along with ATT to the model reduces the influence of DCM and ATT ($\beta=0.566$, $\beta=0.267$) but retains its significance ($p<0.001$, $p<0.001$). The results indicated that ATT makes a meaningful contribution to MP, as ($\beta=0.267$, $p<0.001$). The reduction in the intercept from 7.832 to 5.258 reflects a recalibration of the baseline market performance with analytical tools and techniques.

The regression analysis highlights that data collection and management (DCM) is the dominant factor influencing market performance (MP) in healthcare industries, with a strong and statistically significant effect. Adding analytical tools and techniques (ATT) to the model enhances predictive accuracy, demonstrating that ATT plays a supportive yet significant role. Together, these predictors offer a robust framework for understanding and improving market performance. Firms should focus on optimizing both data collection & management and fostering analytical tools & techniques for sustained market success.

Table 9. Showing the Final Bootstrapping results of construct on Financial and Market Performance of Healthcare Industries.

	Original Sample (O)	Sample Mean (M)	Standard Deviation	T statistics
ATT -> FP	0.096	0.100	0.089	1.085
ATT -> MP	0.165	0.166	0.101	1.631
CE -> FP	0.202	0.203	0.101	2.002*
CE -> MP	0.099	0.102	0.115	0.858
DCM -> FP	0.601	0.598	0.059	10.13**
DCM -> MP	0.574	0.573	0.066	8.752**
TI -> FP	0.015	0.016	0.067	0.229
TI -> MP	0.045	0.043	0.077	0.588

The bootstrapping results provide insights into the relationships between constructs and financial performance (FP) and market performance (MP) in healthcare industries. Data Collection and Management (DCM), Coefficient: 0.601, $T=10.13$, $T=10.13^{**}$, emerged as a positive and highly significant relationship with financial performance, underscoring the critical role of data collection and management in driving financial performance. Similarly, DCM has a strong and significant relationship with market performance, as coefficient 0.574, $T=8.752$, $T=8.752^{**}$. Data collection and management (DCM) has been identified as the most influential construct for both financial and market performance in healthcare industries. Organizations' compliance and ethics have also emerged as another significant factor in financial performance as coefficient 0.202, $T=2.002$, $T=2.002^{*}$. This shows a significant positive relationship, indicating that organizations' compliance and ethics have positive impacts on financial performance. But at the same time, it suggested a limited influence on market performance as the coefficient 0.099, $T=0.858$, $T=0.858$. The other variables, like analytical tools & techniques (ATT), and technology & infrastructure (TI) played limited roles on financial performance (FP) and market performance (MP).

The results reaffirm the critical role of data collection and management in driving both financial and market performance in healthcare industries. Effective data management likely enables firms to optimize resources, respond to market trends, and achieve operational efficiency. Hence, both hypotheses $H1a$ and $H1b$ have been accepted. Organizations' compliance and ethics have a statistically significant impact on financial performance, suggesting that engaging customers enhances revenue, loyalty, and financial outcomes. However, its non-significant impact on market performance might indicate that while compliance and ethics boost financial metrics, it may not directly influence broader market metrics such as market share or competitive positioning. Hence, the hypothesis $H2a$ has been accepted and rejected the $H2b$. The near-significant relationship between ATT and MP suggests it might influence softer dimensions of market performance, such as brand perception or customer satisfaction. Hence, the hypothesis $H3b$ has been accepted and rejected the $H3a$. The lack of significance for technology & infrastructure indicates that while team dynamics might matter for internal processes, they may not translate directly into performance outcomes in the context of this study. Hence, both hypotheses $H4a$ and $H4b$ have been rejected.

CONCLUSION

The study found a strong and significant association between DCM and organizational performance through rigorous statistical tests, such as reliability analysis, descriptive analysis, and regression modelling (Khadka et al., 2023). According to the regression analysis result $R^2=0.552$ for DCM explained 55.2% variance of financial performance. Moreover, introducing Compliance and Ethics (CE) in the model, fortified this correlation, accentuating the subsidiary association of compliance in securing financial stability. Data collection and management is a strong predictor of market performance followed by analytical tools & techniques. Looking a bit closer at the regression coefficients, we find that DCM is still the most powerful predictor for financial and market performance along with CE and ATT playing a supporting role. Upon bootstrapping validation, these conclusions are reinforced, where all variables have a definite impact on financial performance ($T=10.13$) and market performance ($T=8.752$), and DCM having the greatest substantial impact on financial performance and market performance. Healthcare organizations using these comprehensive data management frameworks could guide optimal resource allocation, drive strategic and tactical decision-making, compliance, and faster market access. Compliance and Ethics (CE) have a significant effect on financial performance ($T=2.002$) indicating that ethical governance leads to financial prosperity, but it has no direct impact on market performance. This indicates that compliance and aligns with regulations, enhances investor confidence.

The study shows a moderate effect of ATT on market performance ($T=1.631$) with a weak influence on financial performance ($T=1.085$). Although ATT positively influences brand perception and engagement in the consumer ecosystem, it does not directly correlate with profitability. By the same token, Technology & Infrastructure (TI) had no significant effect on both financial and market performance, implying that technological input does not equate with a monetary loss in terms of performance, even though it remains a crucial aspect of operation management in the healthcare sector. In summary, these results support the importance of data integration approaches as a basis for the long-term profitability and success of healthcare companies in the market. Though compliance and ethics are essential for stability in regulation and investor confidence, they do comparatively little to influence competitive positioning within the market. While examining this facet, organizations should also be aware of the ancillary outcomes of analytical tools and technological backbone by keeping data-driven decision making at the crux of their strategic endeavours.

Managerial Implications

The outcomes of this study suggest a number of actionable insights for healthcare industry managers. The significant relationship between DCM, financial, and market performance emphasizes a need for enriched data-driven decision-making initiatives. To improve this process, organizations must adopt integrated data management systems that facilitate real-time analytics, predictive modelling, and streamlined information processing. Utilizing the data, leaders will be able to make more strategic decisions and be more agile in reacting to changes in the marketplace (Smith & Brown, 2021).

CE plays a critical role in the sustainability of financial performance. Compliance, organizations should make it part of their corporate strategy, ensuring full adherence to the regulatory frameworks, fair business operations, and proactive risk management. Not only do ethical business practices promote investor confidence, but they also support long-term financial sustainability (Williams & Zhao, 2020).

At the same time, from a market angle, DCM drives a lot of performance and adds a secondary benefit. Hence, managers must work on how data is collected, while utilizing analytical tools to improve the market strategy. This can be done through investments in AI-powered analytics, customer sentiment tracking, and business intelligence platforms to better predict market trends and consumer behaviour insights (Jones et al., 2022). For this purpose, the tools help the companies in taking the right positioning of products and reasonable market entry.

The study concludes that the direct effects of ATT and TI on financial performance are of limited significance. These features improve operational efficiencies but do not directly drive revenue. Hence, firms must establish a link between tech investments and financial objectives using AI-powered finance forecasting models and automating data crunching to create a synergy between the technology and profitability (Harris et al., 2021). As DCM impacts financial and market performance decisively, managers should promote training within the workforce to adapt best practices in data management. A data-driven culture should be fostered as organizations should make it a point to enable the workforce to make decisions based on empirical insights as this will positively contribute to the organizational efficiency and firms' competitive advantage in the pharmaceutical sector (Johnson & Patel, 2023). The direct influence of compliance and ethics on market positioning is complex; however, building a strong brand through ethical behaviour and transparency to customers can lead to enhanced trust and, eventually, loyalty as well. The firms ought to develop brand management strategies that factor in ethical ideals within all marketing and customer interaction practices (Martin & Gupta, 2022).

Also, scalability in the handling of the data becomes important. Data volumes increase exponentially as healthcare companies scale. Creating a scalable data infrastructure that follows cloud computing and blockchain technology will also ensure that firms implement secure data peripherals and operations that can be dynamically changed when the need arises (White & Thompson, 2021). Finally, the findings of this study have clear managerial implications for increasing financial and market performance in the healthcare sector. Incorporating these elements in a pyramid of public policies creates the foundational framework for data management, computational enabling, governance systems, and marketing synergies that provide firms with background and predictability about investment acquisition leading to advantage from voice, speed, and validity in their decision-making process leading to sustainable growth and competitive success.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. *Journal of Industrial Information Integration*, 18, 100129.

Agu, E. E., Obiki-Osafiele, A. N., & Chiekezie, N. R. (2024). Enhancing Decision-Making Processes in Financial Institutions through Business Analytics Tools and Techniques. *World Journal of Engineering and Technology Research*, 3(01), 019-028.

Amajuoyi, C. P., Nwobodo, L. K., & Adegbola, M. D. (2024). Transforming business scalability and operational flexibility with advanced cloud computing technologies. *Computer Science & IT Research Journal*, 5(6), 1469-1487.

Brigham, E. F., & Houston, J. F. (2019). *Fundamentals of Financial Management*. Cengage Learning.

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. *MIS quarterly*, 1165-1188.

Chen, L., & Park, Y. (2022). Regulatory compliance and financial success. *Global Business Review*, 20(3), 90-108.

Davenport, T. H., & Harris, J. G. (2022). *Competing on Analytics: The New Science of Winning*. Harvard Business Review Press.

Davenport, T. H., & Harris, J. G. (2017). *Competing on analytics: Updated, with a new introduction: The new science of winning*. Harvard Business Press.

Duan, Y., Cao, G., & Edwards, J. S. (2020). Understanding the impact of business analytics on innovation. *European Journal of Operational Research*, 281(3), 673-686.

Handoyo, S., Suharman, H., Ghani, E. K., & Soedarsono, S. (2023). A business strategy, operational efficiency, ownership structure, and manufacturing performance: The moderating role of market uncertainty and competition intensity and its implication on open innovation. *Journal of Open Innovation: Technology, Market, and Complexity*, 9(2), 100039.

Harris, K., Patel, A., & Kumar, S. (2021). Financial forecasting using machine learning. *Journal of Financial Analytics*, 12(4), 120-145.

Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. *Government information quarterly*, 37(3), 101493.

Johnson, T., & Patel, R. (2023). The impact of data-driven culture on business performance. *Strategic Management Journal*, 29(1), 35-52.

Jones, M., et al. (2022). Leveraging AI in pharmaceutical marketing. *International Journal of Market Research*, 45(3), 78-95.

Kharub, M., & Sharma, R. (2020). An integrated structural model of QMPs, QMS and firm's performance for competitive positioning in MSMEs. *Total Quality Management & Business Excellence*, 31(3-4), 312-341.

Lee, C. S., Cheang, P. Y. S., & Moslehpoour, M. (2022). Predictive analytics in business analytics: decision tree. *Advances in Decision Sciences*, 26(1), 1-29.

Manyika, J., et al. (2021). "The Future of Analytics in Business." *McKinsey & Company*.

Martin, D., & Gupta, R. (2022). Reputation management and customer loyalty. *Journal of Consumer Research*, 41(5), 98-115.

Nguyen, A., Lamouri, S., Pellerin, R., Tamayo, S., & Lekens, B. (2022). Data analytics in pharmaceutical supply chains: state of the art, opportunities, and challenges. *International Journal of Production Research*, 60(22), 6888-6907.

Quazi, S. (2022). Artificial intelligence and machine learning in precision and genomic medicine. *Medical Oncology*, 39(8), 120.

Ranjan, J., & Foropon, C. (2021). Big data analytics in building the competitive intelligence of organizations. *International Journal of Information Management*, 56, 102231.

Roberts, J., & Evans, M. (2021). AI-driven customer engagement in pharma. *Marketing Science*, 38(2), 43-67.

Saini, A. (2024). The Impact of Business Analytics in the Finance Industry. Available at SSRN: <https://ssrn.com/abstract=4843086> or <http://dx.doi.org/10.2139/ssrn.4843086>

Saini, A., & Rajesh, A. (2024). Optimising performance by fusion of business intelligence and marketing mix in decision making process. *International Journal of Management and Decision Making*, 23(4), 415-437.

Samuel, O. O., & Udo, E. U. (2023). Talent management and organizational goal attainment of selected manufacturing firms in Akwa Ibom State. *International Journal of Advanced Academic Research*, 9(6).

Sarkis, M., Bernardi, A., Shah, N., & Papathanasiou, M. M. (2021). Emerging challenges and opportunities in pharmaceutical manufacturing and distribution. *Processes*, 9(3), 457.

Shahbaz, M., Gao, C., Zhai, L., Shahzad, F., Luqman, A., & Zahid, R. (2021). Impact of big data analytics on sales performance in pharmaceutical organizations: The role of customer relationship management capabilities. *Plos one*, 16(4), e0250229.

Smith, J., & Brown, R. (2021). Data-driven decision-making in the pharmaceutical industry. *Journal of Business Analytics*, 34(2), 45-67.

Thapa, C., & Camtepe, S. (2021). Precision health data: Requirements, challenges and existing techniques for data security and privacy. *Computers in biology and medicine*, 129, 104130.

Thompson, S., & Baker, H. (2023). The role of big data in competitive strategy. *Management Review*, 22(1), 88-104.

Tuboalabo, A., Buinwi, J. A., Buinwi, U., Okatta, C. G., & Johnson, E. (2024). Leveraging business analytics for competitive advantage: Predictive models and data-driven decision making. *International Journal of Management & Entrepreneurship Research*, 6(6), 1997-2014.

Tzimas, D., & Demetriadis, S. (2021). Ethical issues in learning analytics: A review of the field. *Educational Technology Research and Development*, 69, 1101-1133.

Vibhakar, N. N., Tripathi, K. K., Johari, S., & Jha, K. N. (2023). Identification of significant financial performance indicators for the Indian construction companies. *International Journal of Construction Management*, 23(1), 13-23.

White, C., & Thompson, B. (2021). The future of blockchain in data security. *Technology and Innovation Review*, 15(2), 60-75.

Williams, P., & Zhao, L. (2020). The role of corporate ethics in financial stability. *Harvard Business Review*, 98(6), 22-35.

