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ABSTRACT

In this article, we introduce a new statistical model called the Neutrosophic inverse Gompertz Rayleigh (NGIR)
distribution, which has excellent modelling to COVID-19 mortality data in the Netherlands. The model uses
neutrosophic logic to address uncertainty in the data by representing parameters as time intervals (using
neutrosophic logic, the direct method). The basic distribution functions were found, and several mathematical
properties of the distribution were derived. Several tables illustrating the behavior of the distribution were
developed based on these properties. Equations for estimating the parameters of the distribution were found using
three estimation methods. The performance of NGIR was evaluated using Monte Carlo simulations of five
estimation methods, and the results of these simulations were compared using several statistical measures to
determine which method is best for estimation. Practical application on mortality data confirmed the model's ability
to represent complex data with high degrees of uncertainty, making it a powerful tool for epidemiological analysis.
The results demonstrated that NGIR outperforms other neutrosophic distributions in terms of information criteria
and goodness of fit.

Keywords: Neutrosophic Logic, Inverse Rayleigh, COVID-19 Mortality, Monte Catrlo Simulation, And
Neutrosophic Incomplete Moments.

INTRODUCTION

Over the decades, the field of statistical distributions has undergone substantial progress. Initially, research
focused on foundational distributions such as the normal and Poisson models. However, to address the growing
complexity of real-world data. As challenges in data modeling became more intricate, especially in fields dealing
with skewed, heavy-tailed, or highly variable data, researchers recognized the need for more adaptable probabilistic
models. This increasing complexity motivated the development of new, more adaptable distribution families.
Among the modern techniques proposed to address this challenge is the T-X family method, introduced in 2013
by [1], which constructs new distributions by combining a transformation function (T) with a baseline distribution
(X), enabling enhanced flexibility in modeling non-standard data pattern. This method is based on functional
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transformations, where new distributions are created by integrating the PDF function of the distribution, but the
upper bound of the integration must be a function that satisfies the conditions of the CDF function, rather than a
random variable.

Examples of these families include: Wei-G-family 2014 [2], BMO-Family 2015 [3], MKi-G-family 2020 [4],
EW-G-family 2021 [5], WEE-X-2023 [6], NGOF-G-family 2023 [7], EOIW-G-family 2024 [8], HOE-®-family
2024 9], and OLG family [10], all of these families, aim to provide great flexibility in data modeling.

Neutrosophic logic, proposed by Florentin Smirni¢ in the late 1990s, represents a generalization of fuzzy logic
by incorporating a tri-component structure. Instead of evaluating propositions solely based on degrees of truth or
falsehood, neutrosophic logic introduces a third dimension -indeterminacy-allowing each component: truth (T),
indeterminacy (I), and falsity (F) to independently assume any value within the interval [0, 1]. This more general
structure provides the ability to handle uncertain or incomplete information, especially in complex systems. In
statistics the use of neutrosophic logic has enabled the construction of neutrosophic probability distributions,
which take into account the uncertainty by including uncertainty in the parameters of the classical statistical model.

For example, in a neutrosophic normal distribution, the mean and standard deviation may be non-precisely
defined values and are expressed as neutrosophic intervals. On one hand, modern statistical methods such as the
T-X family—introduce novel distributional forms capable of capturing atypical data behavior as follows ( [11],
[12], [13], [14], [15], [L6], [17]).

On the other hand, neutrosophic logic contributes a robust framework for representing uncertainty by
transforming classical parameters and random wvariables into interval-based expressions. Together, these
approaches open new avenues for research and application in data-driven disciplines, broadening the theoretical
and practical scope of both statistics and logic

neutrosophic Gompertz-G (NGo) family introduced which has neutrosophic cumulative density function
(NCDF) and neutrosophic probability density functions (NPDF), respectively, in the forms:

. by M(xn)
#Gﬂlwwv (1)
Gngo(xy) =1—e
. by M(’EN))
aym(x Mlen) b_N(l_e e xN)
(1—M(xy))

Where M (xy) and m(xy) are NCDF and NPDF for any baseline neutrosophic distribution with a
neutrosophic random variable Xy, is defined as Xy = d + kI, where d represents the determined component
and tI represents the indeterminate part. The values of kI are confined to the interval [X;, X ], where X} and Xy
represent the lower and upper bounds of the random variable. Likewise, the values of kI fall within the range of
[1;,Iy]. It is crucial to note that the NGo family transforms into the classical Go family when the lower limit X}
is identical to the upper bound Xy, and Neutrosophic shape parameters ay, and by, which are within the ranges
ay € [a,,ay],and by € [by, by].

The objective of this paper to introduce a novel probability distribution to model complex and uncertain
statistical data like COVID-19 mortality data in neutrosophic paradigm. The aim of the study is to make the model
as flexible as possible with a good fit to high variance and uncertainty of data and also to compare the performance
of the model with known distributions. Additionally, the study intends to present efficient estimations of model
parameters such as maximum likelihood (MLE) and application to real data to improve the accuracy of statistical
analyses in epidemiological fields.

Neutrosophic Gompertz Inverse Rayleigh (NGIR) Distribution

The CDF and PDF for Inverse Rayleigh distribution, which is specified by a single parameter ¢. The following
formulae [11] can be used to characterize these functions:

M(x) = e_xi2 3
m(x) = z—ge_xi2 4)
x

The above functions (3 and 4) reflect as Neutrosophic function by replace the of the random variable
Xy and parameter ¢ with each other with the neutrosophic random variable X and neutrosophic parameter
respectively
cy € [cr, cyl, to get a form:

My) =e & )
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2cy -X
mx) =—e ©
N
We can get the NCDF for Neutrosophic Gompertz Inverse Rayleigh (NGIR) distribution by combine the

equations 5 and 1 to get a form:

N
2
X
by _I;'_N
o R ™
Gxy)=1—¢ )

We can get the NPDF for NGIR distribution by combine the equations 5, 6 and 2 to get a form:

cN a_Nl 1—e 1-e XN

|
-2 b
CN e XIZV N| | 8
T2 by oy ©)
2cyaye *N v
e 1-e *Ne

g(xN) = oy 2
xsl1—e "12\1)

The neutrosophic survival function for NGIR can also be obtained for distribution in the formula [18],
[19]:

an| xgy |
| ©)

Sn(xy) =e \ /

The neutrosophic hazard function for NGIR can also be obtained for distribution in the formula [20],

21]:
N
ey e N
2cyane *N N o

hy (oy) = ——— e 1-e W (10)

—oy\ 2
x5 (1 —e N )
Figures 1-5 present the graphs of the NGIR distribution functions for various intervals of the parameters.

Parameters Interval:

Parameters Interval:
Line1: a=13, b=13,c=08Line2 a=19, b=21,1

Line1: a=11, b=02,c=11Lne2 a=18, b=17,c=19
. 1.00 — 1.00
o o
M 0.75 o 0.75
z z
~ 0.50 ~ 0.50
5 A
% 0.25 % 0.25
0.00 0.00
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15
XN xN
Parameters Interval: Parameters Interval:
Line1: a=19, b=17,c=05LIne2 a=13, b=29,c=1 Line1: a=01, b=07,c=07Line2. a=14, b=13 ¢«
. 1.00
o
M 0.75
prd
~ 0.50
Lo
S 025
= 0.00
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15
xN xN

Figure 1. Plot NCDF for NGIR distribution with different interval values for parameters
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Figure 2 3D-plot NCDF for NGIR distribution
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Figure 3. Plot NPDF for NGIR distribution with different interval values for parameters
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Figure 4. 3D-plot NPDF for NGIR distribution
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Figure 5 Plot Survival for NGIR distribution with different interval values for parameters
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Figure 1:1 NCDF curve for NGIR distribution of various parameter values over ranges. It is observed that
this curve represents the trend of the cumulative distribution with changes in the neutrosophic parameters which
can be flexible in representing the data in the presence of uncertainty in the data.

Figure 2 presented the three-dimensional graph of the NCDF function .Which relates to how we can think
about the neutrosophic random variable and its various parameters. It shows how the function changes as values
of parameters vary within specified intervals. This three-dimensional curve thus underscores the very complex
interplay between these variables, demonstrating how adaptable this function is to the data.

Figure 3 illustrates the NPDF curve for an NGIR distribution with distinct parameters values. In this case, we
observe how the probability density distribution is affected by neutrosophic coefficients and the curves undergo
certain changes regarding their shape and spread based on the parameters. This highlights the model’s adaptability
in capturing data that is idiosyncratic in nature, for example, extremely variant or highly skewed.

Figure 4 shows a three-dimensional view of the NPDF function. This illustration gives a clear impression of
how the probability density is affected when the values of the random variable and the parameters are altered. The
three-dimensional curve exposes the intricate nature of the function and illustrates how the distribution is capable
of adapting to data changes while still considering uncertainty.

Figure 5 shows the neutrosophic survival function curve for an NGIR distribution with varying parameter
values. The survival function defines the probability of a random variable staying above a certain value, and this
curve shows the changes in this probability due to the changes in the neutrosophic coefficients. The curves show
different patterns regarding the behavior of the survival function which demonstrates the capability of the model
to describe data with large degrees of uncertainty.

Properties for NGIR Distribution
Mathematical Representation

Proving the mathematical properties of the NGIR distribution poses problems in dealing with its more basic
distribution functions. Hence, the NCDF and NPDF functions are simplified through the use of exponential
function expansion and scalar expansion [22], [23] as follows

G(xy) = 1 — Webnlkn+smxy’ (11)
90xn) = yZbyxy® e Pnlw o D (12)
The functions GO and gPNare also needed to prove some properties. Therefore, these functions are simplified
in the same manner, as follows:
GO~ (xy) = Te—bn(n+pN)xy’ (13)
gPN (xy) = ZEbNxﬁSe_bN(mN"'sN"'BN)x;IZ (14)
— Y (_l)jNF(kNrSN) iv.En—in KN

where ¥ = 2y = f=k=sw=0 {yticytsy (i) N PN N

_ y'© (~0INren+2on) (IN) in+1,—in ptng; t

Y = Liy=jy=tn=0 iNENONIT (Ey+2) 'N) N by by Uy + D,

_ oo (—1)1N+WN+TN+ZNF(ZN:PN) 1) w WN JWN 1. ZN—WN . ZN
T = ZlN=WN=TN=ZN=PN=0 WNZNDN T (ZN) (l}l\\]’) ( N) aN lN bN N, and
(1)INI(2pN+Mp.EN) (dN> dn+BN pdn MmN m
a b + N,
dN!mN!b;\i,NsN!F(ZBN+mN) CIN N ﬁN N (ﬁN qN)

_ oo
E= ZdN=‘IN=mN=5N=0
The Neutrosophic Moments

c e any neutrosophic random variable cn ( neutrosophic moments for any neutrosophic can
Let Xy be any neutrosophic rand ble, then the n*™ neutrosoph ts for any neutrosoph

expressing as form [24]:

o =BG = [ gy
0
Substitution equation 12 in above equation to get the n"* neutrosophic moments for NGIR distribution by

form:
* 2

M‘;l — yf xﬁ 2bleg3e—bN(tN+UN+1)xN de
0

By solving the above integral, we obtain the neutrosophic moment function for the distribution in the form:

/ L n
i = ylby(ty + vy + DT (1) (15)
In order to identify the nature of the distribution in finding moments, as well as the values of variance,
skewness, and kurtosis, Table 1 is prepated, as follows:
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Table.1 some intervals of moments for NGIR distribution
ay bN Cy .ulN p"ZN p"3N p"‘l‘N O-ﬁ SN KN
2| 10384902, | 0162865, | [0.074459, | [0.03625, | [0.014715, | [1.132859, | [1.366638,
— | 2| 0.53043] | 0.430025] | 0.357749] | 0.30407] | 0.148669] | 1.268638] | 1.644316]
(=} —
b
==
= S [0.541043, | [0.322313, | [0.20705, | [0.141304, | [0.029585, | [1.13151, | [1.360186,
— 2| 0480837 | 0.394314] | 0.331147] | 0.283666] | 0.163109] 1.33739] 1.824414]
(=} [l
&
g
by —_
= 3 [0.61549, | [0.417485, | [0.300466, | [0.226594, | [0.038657, | [1.11387, | [1.300068,
= | 5| 0446578] | 0.370406] | 0313993] | 0.271063] | 0.170974] | 1.392849] 1.97567]
HE
=
al=
= i [0.606161, | [0.445274, | [0.343758, | [0.275817, | [0.077842, | [1.156944, | [1.391128,
2| 0.401088] | 0.335366] | 0.286165] | 0.248377] | 0.174494] | 1473457 | 2.208377]
;3 [0.634303, | [0.464307, | [0.355943, | [0.283149, | [0.061967, | [1.12505, [1.31342,
— | 2| 0.414714] | 0.348283] | 0.298165] | 0.259431] | 0.176295] | 1.450636] | 2.13874]
S | =
N
=
5=
= § [0.595121, | [0.452961, | [0.35893, | [0.293708, | [0.098792, | [1.177385, | [1.431512,
= 2| 0.373748] | 0.316033] | 0.272083] | 0.237843] | 0.176345] 1.53145] | 2.381368]
2
\9 p—
= f’. [0.56983, | [0.445838, | [0.361208, | [0.300932, | [0.121132, | [1.213365, | [1.513958,
— | 2| 0.343111] | 0.292244] | 0.25313] | 0.222399] | 0.174519] | 1.602233] | 2.60401]
S | X
2
2=
\O
= S’, [0.462908, | 0.37013, | [0.305314, | [0.258225, | [0.155846, | [1.35586, | [1.884902,
2| 0.292924] | 0.250921] | 0.218365] | 0.192611] | 0.165116] | 1.737313] | 3.059204]

Results indicate that the mean fl; yN appears to exhibit a gradual contraction with increasing the parameter
value, particularly as cy_N transitions from the greatest to the smallest interval where the mean decreases. This
suggests that the distribution is pulled toward lower values as the parameters increase and may represent the nature
of an NGIR distribution in which large parameter values tend to shift the distribution in the left tail. There is,
however, a significant widening of the variance with increasing parameters which suggests a moderate to strong
level of dispersion in the data. This behavior can be explained by the neutrosophic nature of the distribution which
allows for greater uncertainty in the data due to the wide range of parameter values, resulting in higher variance.
Looking at the shape of the distribution, the skewness coefficient shows positive values for all groups indicating
that the distribution is always right-skewed. This implies that the distribution possibly has thicker tails compared
to a normal distribution

The Neutrosophic Moment Generating Function

The Neutrosophic Moment Generating Function (NMGF) for NGIR distribution, from neutrosophic
moment function and exponential expansion can be get a form [25]:

My (t) = E(e™) = fooetxg(xzv)dx
0
M, (t) = Z i—r' [—ybl%(bN(tN foy+D) 7T (1- g)] (16)
r=0

The Neutrosophic Characteristic Function

The Neutrosophic Characteristic function (INCF) for NGIR distribution, from neutrosophic moment function
and exponential expansion can be get a form [25]:
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Q) = B(e™) = | e ™gludx
0

e0=)Y
v=0

The Neutrosophic Incomplete Moments

Let Xy be any neutrosophic random variable, then the n‘* neutrosophic Incomplete moments for any

17

[—yb%(bN(tN voy+ 1) r(1- 2]

neutrosophic can expressing as form [24]:
YN
M) = [ 2k gy

0
Substitution equation 12 in above equation to get the nt" neutrosophic Incomplete moments for NGIR

distribution by form:

YN _
Malrw) =7 [ Xk 2t en D
0
By solving the above integral, we obtain the neutrosophic moment function for the distribution in the form:
n_ n bN(tN + Un + 1)
M, (yy) = vIby(ty + vy + D]27'T ((1 - E) ) )2 (18)
N

Neutrosophic Probability Weighted Moments
We may calculate the Neutrosophic probabilistic weighted moments of the NGIR distribution by applying the

following equation [20]:

sy = B (62 G) = [ xhgGu)6 ondday
By substitute equation 12 and 13 in above equation to get a formula:

— - -2
Tk'(SN - .ny x]’\(]szxN?)e bN(tN+‘UN+ZN+pN+1)XN dx

0
Then, integrate the preceding equation to obtain the final formula:

k_ k
Tk,é‘N = ]/T[bNG]Z 1F (1 - E),g = tN + Un + ZN + PN + 1 (19)
— _ T
where k = 0 = TOISN = bN_9

Neutrosophic Quantile Function
Neutrosophic quantile function is the inverse of the NCDF. Mathematically, if G(xy) is the NCDF of a
Neutrosophic random variable, then the Neutrosophic quantile function Qy (p) is defined by the relationship:

Qn(@) = G (xy) = inf{xy € R:G(xy) > q} (20)
where q € [0,1] represents the desired probability. In short, the quantile function returns the value Xy for

which P(Xy < xy) = q, put:

E @)

g=1-e
Then we get a final form:

xN: 1

by
(1 +$ log n)
The following table shows the values of the Neutrosophic quantile function with different parameter intervals.

logm

by
,T=1 —a—log(l —-q)
log ] N 22)

Table 2: Neutrosophic Quantile function for NGIR distribution
q (an, by, cn)
[0.5,1.5], [0.4,1.4], [07,.7], | [0.61.6], | [0.5,15],
© 2025 by Authot/s

1772



Journal of Cultural Analysis and Social Change, 10(4), 1766-1780

[0.7,1.7] [0.7,1.7] [0.8.1,8] [0.4,1.4] [0.9,1.9]
[0.9, 1.9] [0.2,1.2] [0.5,1.5] [0.2,1.2] [1,2]
0.1 | [0.7058782,0 | [0.3496091,0.664 | [0.4898231,0. | [0.3218739,0.651 | [0.7408879, 0.8
8271578 6916] 7202573 6492] 477526]
02 | [0.8405100, 0 | [0.4190495,0.75 | [0.5756444,0. | [0.3838953,0.741 | [0.8774080, 0.9
9412064] 76202 8165176] 8687] 632432
0.3 | [0.9469469, 1 | [0.4731563, 0.82 | [0.6439112,0. | [0.4351759,0.812 | [0.9829988, 1.0
0294006] 93347] 8909101 6293] 518574]
0.4 | [1.0401777,1 | [0.5198557, 0.89 | [0.7043404,0. | [0.4820498,0.875 | [1.0738395, 1.1
1063648] 17266] 9558839] 2755] 285727]
0.5 | [1.1266220, 1 | [0.5625759, 0.94 | [0.7609793,1. | [0.5273073,0.934 | [1.1568185, 1.1
1779766] 96361] 0164873] 3506] 995148]
0.6 | [1.2105646, 1 | [0.6035596, 1.00 | [0.8166026,1. | [0.5729722,0.992 | [1.2362943, 1.2
2479888 60239] 0758620] 9062] 684365
0.7 | [1.2962159, 1 | [0.6449170, 1.06 | [0.87395281. | [0.6213306,1.053 | [1.3164778, 1.3
3200510] 38906] 1371230] 9394] 389694]
0.8 | [1.3899263, 1 | [0.6896758, 1.12 | [0.9373680,1. | [0.6761733,1.122 | [1.4032822, 1.4
:3996793] 76801 2050287] 2641] 165051]
0.9 | [1.5075462, 1 | [0.7453438, 1.20 | [1.0178423,1. | [0.7477535,1.210 | [1.5111508, 1.5
.5008758] 84484) 2915840] 3214] 144485

Based on the conclusions from the table, it can be noted that the quantile function exhibits different behavior
primarily based on the value of the parameter and the probability q As shown in the table above, when q equals
0.1, the quantile value for the first set of parameters is [(0.5,1.5),(0.7,1.7),(0.9,1.9)]=[0.7058782,0.8271578]. The
relatively wide range indicates a high degree of uncertainty which is consistent with the nature of neutrosophic
data that deals with ambiguity and indeterminacy. Additionally we also note that for q value equal to 0.5, which is
50%, it can be seen that the quantile value is increasing for all sets of parameters which is more pronounced in
lower ranges of q, even if that means lower quantile values.

In general all the results from the table suggest that the neutrosophic quantile function for the NGIR
distribution does indeed cover wide ranges of probability while accounting for uncertainty pertaining to the
parameters and yielding results with high value for complex data where, uncertainty and imprecision abound. It is
also noted that the results are highly sensitive towards choosing the right intervals for declaring the range of the
quantile values.

Neutrosophic Rényi Entropy
Neutrosophic Rényi Entropy for NGIR distribution obtained by form [27]:
09}

(b = 7= log | gy

Substituting equation 14 into the equation above, we get:

1
Ir(Bn) = 1— By

By solving the above integral, we obtain the neutrosophic moment function for the distribution in the form:

I = ! l £ 24
R('BN)_l_ﬁN Og[(mN+£N+BN) 9

Estimation Parameters for NGIR Distribution

Maximum Likelihood Estimation - MLE

logf 2Ebyxy3e DN(mnten BN’ gy (23)
0

Maximum likelthood estimation is defined as a method in which the values of the unknown parameters of a
statistical model are determined by maximizing the likelihood function, which represents the probability of
observing the given data under the proposed model. Mathematically, if we have a sample of data Xy =
(Xn1,XN2, -, Xyn) and a probability distribution f(xy|6y) where 8y are unknown parameters, the likelihood
function is written as [28], [29]:

L(Oy,xy) = Hg(xw)
i=1
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-byxy?
b2

n —-bnx b_N 1-e 1 TONEN
ay2byxy3e PN byt — NK )
L(Oy,xy) = 1_[ = 2 ¢ 1-e TN g
=1 (1 —_ e—bNxN )
We compute the log- hkehhood

n e_bin_I\%
=nlogay + nlog(2by) — 32 log xiny — Z byxi? + by Z—_z
— 1 — e~bNxin
i=1 i=1 25)
e_bleN (

-2 Z log 1—e bNxtN + —Z 1—e N1-e‘bN"i_15

Ordinary Least Squares - LSE

The ordinary least squares method is used to estimate the coefficients by minimizing the sum of squared
differences between the observed and predicted values. The equation for the method is given by the formula [30],
[31]:

2
P(Oy) =T, [G(xNo -]

-2
e bNXN
by

n Z—Zkl‘e e PN ) .
i
pOy) = § 1-e -

(26)
n+1

i=1

Weighted Least Squares - WLS

The ordinary least squares method is used to estimate the coefficients by minimizing the sum of squared
differences between the observed and predicted values. The equation for the method is given by the formula [25],
[32]:

)
W(On) = Ty W; [6Cn) — ]
[ b —bNxN 1
n :_N 1-e Nl ~bnxy
N .
l
W(@N)=Z Will1—e 7 27)
Simulation

Estimating complex distributions with random sample methodologies employs Monte Carlo algorithms. For
this study, these algorithms were utilized to assess how accurately five estimators (MLE, LSE, WLSE, ADE,
RTADE) estimate the neutrosophic (fuzzy bounds, not sharply defined) parameter NGIR distribution across
sample sizes N = 50, 100, 150, 200, ... up to 1000. The outcomes were evaluated through mean square error
(MSE) and root mean squate error (RMSE) alongside bias calculations [33], [34]. The simulation results
demonstrate estimating parametets ay , by, and ¢y for compound neutrosophic intervals were the most accurate
at sample sizes N = 50, 100, 150, and 200. Those sample sizes are presented in Table 3 along with the beyond

bound sample ranges.
Table 3: Monte Catlo simulations conducted for NGIR distribution

ay=[3,4 ] by=[15 ,1.9 ], cy=[4 5
Ess.
N Est. Par. MLE LSE WLSE ADE RTADE
[3.9917893, [4.439933, [13.66783,
ay 5.143415] [4.738623, 5.707372] [4.328175, 5.373994] | 5.586339] 16.72482]
e [1.48804362, [0.6342964, [0.9317916, [1.0576053, [-24.13027, -
by 1.96946326] 0.9787356] 1.2897713] 1.4499344] 19.71914]
[4.1572593, [4.03414323, [4.03280694, [4.1392705, [0.4770653,
50 Mean Cy 5.1066804] 4.8707255] 4.90882874] 5.04556834] 0.6105288]
1774
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[11.7349440, [36.820765, [22.351758, [21.257898, [156.29793,
ay | 20.590970] 42.360068] 31.253529] 32.830854] 213.87533]
| 1091061798, [5.3305295, [2.4585748, [2.1103319, [538.68577,
by | 1.61547104) 5.9705607] 3.6179930 3.1313901] 785.70433]
[1.3654623, [2.28251487, [1.87948845, [1.7628712, [12.4434642,
MSE Cn | 1.7436138] 29297338 2.39856760] 2.21794708] 19.3260501]
[3.4256305, [4.610629, [12.50192, 14
ay | 4.537727) [6.068012, 6.508461] | [4.727765, 5.590486] | 5.729821] 62448)
| [0.95426306, [2.3087939, [1.5679843, [1.4526982, [23.20961,
by | 127101182 2.4434731] 1.9021022) 1.7695734) 28.03042]
[1.1685300, [1.51079941, [1.37094436, [1.3277316, [3.5275295,
RMSE Cn | 13204597 1.7116465) 1.54873097] 1.48927737) 4.3961404]
[0.9917893, [1.439933, [10.66783, 12.
ay | 1.143415) [1.707372, 1.738623] | [1.328175, 1.373994] | 1.586339] 72482]
| [0.01195638, [0.8657036, [0.5682084, [0.4423947, [21.21914,
by | 0.06946326] 0.9212644] 0.6102287] 0.4500656] 26.03027]
[0.1066804, [0.1292745, [0.03280694, [0.04556834,0.13 | [3.5229347,
Bias en | 0.1572593] 0.03414323] 0.09117126] 92705] 43894712]
[3.3371217, [3.5789559, [3.4446231, [3.5099832, [14.01895, 17.
ay | 45925015] 4.8551058] 47344332 ] 4.8252873] 32226]
| 51818277, [1.1506284, [1.2995323, [1.3361653, [-24.99249, -
by | 1.91500837] 1.4378564] 1.608203] 1.6528578) 20.22584]
[4.02112953, [3.92451635, [3.96565557, [4.01959377, [0.4287158,
Mean Cn | 5.06446168) 4.90217145) 4.97987068) 5.04276528) 0.5636387]
[3.6125607, [8.4291834, [5.6892027, [5.4656765, (15043933, 207
ay | 7.3270065] 16.4321908] 11.5266142] 10.9631504] 42677]
| 1035229733, [1.2640953, 0.6789265, 0.6277198, 532.42010,
by | 0.70861960] 2.1786850] 1.249400] 1.1773632] 785.54847]
[0.62821559, [1.15557313, [0.82940438, [0.76376007, [12.7704225,
MSE ey | 091991102) 1.68417783] 1.25063673] 1.17656029] 19.7189451]
[1.9006738, [2.9033056, [2.3852050, [2.3378786, [12.26537, 14.
@y | 2.7068444] 4.0536639] 3.3950868] 3.3110648] 40232]
— | 1059354640, [1.1243199, 0.8239700, [0.7922877, [23.07423,
by | 0.84179546] 1.4760369] 1.117766] 1.0850637] 28.02764]
[0.79260052, [1.07497588, [1.117766, 0.87393367, 3.5735728,
RMSE en | 0.95911992] 1.29775877] 1.11831871] 1.08469364] 4.4406019]
[0.3371217, [0.5789559, [0.4446231, [0.5099832, [11.01895, 13
ay | 05925015 0.8551058) 0.7344332] 0.8252873] 32226]
| [0.01818277, [0.3493716, [0.2004677, [0.1638347, [21.72584,
by | 0.01500837] 0.4621436] 0.291797] 0.2471422] 26.89249]
[0.02112953, [0.07548365, 0.03434443, [0.01959377, [3.5712842,
100 Bias Cn | 0.06446168] 0.09782855] 0.03434443] 0.04276528] 4.4363613]
[3.2330815, [3.3452902, [3.3715099, [14.25986, 18
ay | 43825372 [3.5090559, 4.522526] | 4.4250597] 4.4821055] 02245]
— | 1730916, [1.2300223, [1.3665041, [1.3858205, [-20.57370, -
by | 1.92175581] 1.6148214] 1.7516043] 1.7765209] 26.00290]
[4.02293709, [3.992741011, [4.005035421, [4.02867704, [0.4154863,
Mean ey | 5.05377072) 4.92003202] 4.98370275] 5.02388901] 0.5407019]
[2.2530450, [3.4001204, [3.2735087, [144.75355, 205
ay | 42097783) [5.7130047, 9.617191] | 6.231395¢] 5.9360876] 89467]
| 1022752012, [0.7809542, [0.3974947, [0.3939752, [524.65840),
by | 0.38801520] 1.2037000] 0.6700489] 0.6270253] 797.86398]
[0.41647403, [0.802778843, [0.557719932, [0.52553410, [12.8601771,
MSE on | 0.61431219] 1.20738948] 0.83127037] 0.78372013] 19.9116158]
[1.5010147, [1.8439415, [1.8092840, [12.03136, 14.
ay | 2.0517744] [2.3901893, 3.101160] | 2.4962764] 2.4364087] 34903]
| 1047699069, 0.8837161, [0.6304718, 0.6276745, [22.90542,
by | 0.62290866] 1.0971326] 0.8185651] 0.7918493] 28.24649]
[0.64534799, [0.895979265, [0.746806489, [0.72493731, [3.5861089,
RMSE Sn | 0.78378070] 1,09881276] 0.91174030] 0.88527969] 4.4622434]
[0.2330815, [0.3452902, [0.3715099, [11.25986, 14,
ay | 03825372 [0.5090559, 0.522526] | 0.4250597] 0.4821055] 02245]
| 1001730916, [0.2699777, [0.1334959, [0.1141795, [22.07370,
by | 0.02175581] 0.2851786] 0.1483957] 0.1234791] 27.90290]
[0.02293709, [0.007258989, [0.005035421, [0.02867704, 3.5845137,
150 Bias Cn | 0.05377072) 0.07996798] 0.01629725] 002388901 ] 4.4592981]
[3.178766, [3.2757924, [3.1961086, [3.2328265, [14.23228, 14.23
ay | 4.3341579] 4.5264064] 4.4394571] 4.469106] 228
— | 15009392485, [1.3323917, [1.41553979, [1.42216229, [-20.53375, -
by | 1.9088022¢] 1.6457617] 1.7529745) 1.7729688) 26.14192]
[4.01770083, [3.95167704, [3.97905509, [4.003741712, [0.40112790.530
Mean Cn | 5.0534642] 4.98833161] 5.02742585 | 5.05069556] 2202
[1.469628, [3.5873899, [2.1473035, [2.0778749, [129.94555, 20
@y | 3.0763090] 7.0042411] 4.6317177] 4.417308] 7.95695]
| 01430850599, [0.4365696,0.8751362 | [0.22788066, [0.22701091, [493.35856,
200 MSE by | 0.28597103] ] 0.4815695] 0.4589775] 804.27716]
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[0.29702909, [0.58842419, [0.39471441, [0.373341717, [12.9606399,
ey | 04556755 0.87715491] 0.61731889 | 0.58668344] 20.0024963]
[1.212282, [1.8940406, [1.4653681, [1.4414836, [11.39937, 14.
ay | 1.7539410] 2.6465527] 2.1521426] 2.101739] 42071]
— | [0-3782658588, [0.6607341, [0.47736848, [0.47645662, [22.21168,
by | 053476259 0.9354871] 0.6939521] 0.6774788] 28.35978]
[0.54500375, [0.76708813, [0.62826301, [0.611016953, [3.6000889,
RMSE ey | 0.6750374] 0.93656549)] 0.78569644 | 0.76595264] 4.4724150]
[0.178766, [0.2757924, [0.1961086, [0.2328265, [11.23228, 14.
ay | 03341579 0.5264064] 0.4394571] 0.469106] 11899]
— | [0.0009392485, [0.1676083, [0.08446021, [0.07783771, [22.03375,
by | 0.00880226] 0.2542383)] 0.1470255] 0.1270312] 28.04192]
[0.01770083, [0.04832296, [0.02094491, [0.003741712, [3.5988721,
Bias Ty | 0.0534642] 0.01166839] 002742585 0.05069556] 4.4697798]

From table 3:

e MLE: The MLE estimations exhibited the lowest level of bias (Bias) and the lowest mean squared error
(MSE) for the majority of parameters, particulatly as the sample size increased (N = 200). In case of a
sample size of 200, the MLE had lower bias than the LSE for all parameters and lower MSE. This is the
advantage that MLE have received, as it can take full advantage of distribution probability characteristics,
therefore, being capable of performance well enough when handling complex data.

e WLSE: It ranked second best, better than LSE but not as best as MLE. Improving with more samples is
what we saw. This is because WLSE can fix heteroscedasticity since it gives different weights to
observations; hence, it reduces outlier impacts.

e LSE: LSE performed less efficiently compared to the earlier two methods; it recorded higher values for
both bias and mean square error. The weakness of this method is attributed to the strict assumptions of
LSE, like homogeneity of variance and correlation-free errors, which may not hold in real data. ADE: ADE
recorded intermediate values for bias (BIAS) and mean square error (MSE) compared to MLE and WLSE,
but outperformed LSE in some cases. ADE showed improvement with increasing sample size, but this
improvement was less pronounced compared to MLE

e RTADE: RTADE executed the worst among all methods, with a very high bias. This poor performance
is due to RTADE focusing on the right tail of the distribution; it is highly sensitive to outliers in
neutrosophic data, where wide parameter intervals are additional sources of instability.

e While WLSW and ADE perform okay in some situations, MLE is still the best method for estimating
parameters of the NGIR distribution because of its high accuracy and stability. RTADE seems
inappropriate for this model due to its huge bias and skewing over wide intervals. WLSW and ADE should
be used only as supplementary means of checking results; they cannot replace MLE in actual applications.

Application

Given the complexities associated with analyzing epidemiological data, especially in the context of the
COVID-19 pandemic [35], there is a need for flexible probability distributions capable of representing the high
uncertainty and variability in the data. The NGIR distribution provides an advanced mathematical framework for
modeling such data, incorporating the concept of interval-valued parameters to capture the inherent ambiguity in
the data. In this section, the performance of the NGIR distribution is evaluated compared to six other neutrosophic
distributions, e.g., Neutrosophic Odd Lomax Inverse Rayleigh (NOLIR), neurosophic Kumaraswamy (NKulR),
Neutrosophic Exponeted Generalized Inverse Rayleigh (NEGIR), neutrophilic log-gamma Inverse Rayleigh
(NLGIR), neutrophilic beta Inverse Rayleigh (NBIR), and neutrophilic Inverse Rayleigh (NIR), using Dutch
COVID-19 mortality data. The comparison relies on integrated informatics (AIC [41], CAIC [306], BIC [37] , HQIC
[38]) and statistical criteria (p-value, Anderson-Darling (A) [39], Cramér-von Mises (W) [4], and Kolmogorov-
Smirnov (KS) [40], [41]) to identify the best model and statistical measures.

The following table presents a statistical summary of a variable (Var) measured in a sample of 30 observations
(N = 30), along with some statistical values for the data used. The data are presented in the form of neutrosophic
intervals (interval-valued), meaning that each statistic has a lower and an upper limit.

Var | N | Mean | SD | Median | Trimmed | Mad | Min | Max | Range | SK | KU | Se
—_ —_— p— — — = = —_
N > o o N = & © S ||

— W ; ~ N X P s < p
= = N ) o ~ N N Nt [ {

[ 3 s S J

— = O - - < P o <
=) w» o - N - I = : - S
[ n =3 a = (3 P . & O
o) = & = & &= k=) S = | = | =

Tables 4 to 6 show the results of comparing the NGIR distribution with other distributions.
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Table 4. results of the criteria for the distributions

Dist. log AIC CAIC BIC HQIC
[160.1154, 161.30
NGIR [76.3853, 76.97917] | [158.7706,159.9583] | [159.6937, 160.8814] | [162.9742, 164.1619] | 31]
[174.3182, 176.63
NOLIR [83.4867, 84.64634] | [172.9734,175.2927) | [173.8965,176.2158] | [177.177,179.4963] | 75]
[82.26124, 83.2033 [171.8672, 173.75
NKulR 8] [170.5225, 172.4068] | [171.4456,173.3298] | [174.7261, 176.6104] | 15]
NEGIR [81.0586, 82.0396] | [168.1172, 170.0792] | [169.0403, 171.0023] | [172.3208, 174.2828] | [169.462, 171.424]
[78.11411, 78.8487 [163.573, 165.042
NLGamIR 7] [162.2282, 163.6975] | [163.1513, 164.6206] | [166.4318,167.9011] | 3]
[82.04871, 82.9977 [171.4422, 17334
NBeIR 7] [170.0974, 171.9955] | [171.0205,172.9186] | [174.301,176.1991] | 03]
[168.6839, 170.36
NIR [83.11783, 83.9568] | [168.2357,169.9136] | [168.3785,170.0565] | [169.6369, 171.3148] | 18]

Table 5. value of the statistical measures

Dist. w A K-8 p-value

NGIR [0.0268702, 0.02770035] [0.1855461, 0.1890523] [0.08034257,0.08649474] [0.9639576, 0.9816981]
NOLIR | [0.2297134, 0.2534004] [1.445338, 1.567715] [0.1907744, 0.1914555] [0.1945301, 0.1977047]
NKulR [0.1927844, 0.2104938] [1.237822,, 1.326984] [0.1917165, 0.1928729 | [0.1880491, 0.1933235]
NEGIR | [0.1466052, 0.1657331] [0.9725824, 1.070791] [0.1546121, 0.1587126] [0.3950125, 0.4270969]
NLGam [1.221245¢-15,1.221245¢-
IR [9.713265, 9.742436) [59.80061, 59.85859] 0.9933995, 0.9937315] 15]

NBeIR [0.1857669, 0.2037795] [1.197997, 1.288988] [0.1837796, 0.1851674] [0.2253741, 0.2326529]
NIR [0.1875187, 0.2053168] [1.208044, 1.2977906] [0.2179057, 0.2181093] [0.0985182,0.09906559]
Table 6. Estimator value interval for parameters by MLE

Dist. ay by ey

NGIR 10.063694659, 0.060528230] [0.006384761, 0.006563764] [2.5641639722.898459181]
NOLIR [26.420065, 46.810342] [17.567029, 29.835744] [5.055747, 5.739065]

NKulR [3.0874136, 3.2610057] [0.7395029, 0.7521805] [3.0874136, 3.2610057]
NEGIR [0.7640630, 0.7703582] [21.6626007, 25.8950075] [0.1959427, 0.2768060]
NLGamIR [29.83443932, 35.20388063)] [4.23819280, 4.65152195] [0.01511706, 0.02365754]
NBeIR [5.9071571, 7.9709860] [0.7335148, 0.7445871] [1.1073351, 1.6785324]

NIR | ] e [11.84369, 13.04873]

NCDF
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Figure 6. Empirical Fitted NGIR NCDFs with data set
NGIR with Histogram Dutch COVID=19 Mortality Data
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Figure 7. NGIR with Histogram Dutch COVID-19 Mortality Data
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Table 4: The NGIR distribution demonstrated superior performance across the evaluated criteria, consistently
yielding the lowest values among all compared models. This suggests it provides the most accurate representation
of the data. For instance, its AIC values ranged between [158.7706, 159.9583], significantly lower than those of
alternatives like the NOLIR distribution, which ranged from [172.9734 to 175.2927]. These results highlight the
NGIR model's strength in minimizing information loss.

Table 5: Further validation of the NGIR distribution’s effectiveness is found in its performance on goodness-
of-fit tests. It achieved the lowest W and A statistics (e.g., W values within [0.0268702, 0.02770035]) along with th
highest p-values (ranging from [0.9639576 to 0.9816981]), outperforming other models that showed weaker fits to
the data.

Table 6: This table summarizes the parameter estimates obtained through the maximum likelihood estimation
(MLE) method. For the NGIR model, parameter values were estimated with high precision, indicating the model’s
strong capacity to account for variability and uncertainty within the dataset.

Figure 6 compares the empirical cumulative distribution function (ECDF) of the observed data with the
theoretical NCDF of the NGIR model. The close alighment between the two curves suggests a strong agreement,
reinforcing the model’s suitability for this dataset.

Figure 7 displays the data histogram overlaid with the NGIR probability density function. The alignhment
between the empirical and theoretical distributions further confirms the model’s capability in capturing the
characteristics of the COVID-19 mortality data.

CONCLUSION

The study results confirm that the NGIR provides an effective framework for modeling data with high degrees
of uncertainty, such as COVID-19 mortality data. By analyzing the attached tables and figures, it is clear that the
NGIR outperformed other distributions in terms of information criteria and goodness of fit, recording the lowest
AIC and BIC values and the highest p-values. This indicates that the model is able to better capture the variance
and uncertainty in the data.

Also, Monte Carlo simulations showed that the Maximum Likelithood (MLE) method was the most accurate
in estimating the NGIR parameters compared to other methods such as the LSE and WLSE. A practical
application on Dutch data confirmed the model's suitability, as its strength lies in its ability to handle parameter
intervals, making it suitable for data with an ambiguous nature.

In addition, the graphs showing the convergence of the theoretical curves with the actual data support the
hypothesis that the NGIR provides an accurate representation of reality. These results open new avenues for the
use of neutrosophic models in the analysis of epidemiological data and other areas characterized by uncertainty.
Finally, the study recommends the use of NGIR as a fundamental tool in the statistical modeling of complex data,
emphasizing the importance of choosing appropriate estimation methods such as MLE to ensure the accuracy of
results. It also proposes future research to explore the model's applications in other fields and expand its scope to
include additional types of uncertain data.

Funding Statement: This work was supported and funded by the Deanship of Scientific Research at Imam
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