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ABSTRACT 

In this article, we introduce a new statistical model called the Neutrosophic inverse Gompertz Rayleigh (NGIR) 
distribution, which has excellent modelling to COVID-19 mortality data in the Netherlands. The model uses 
neutrosophic logic to address uncertainty in the data by representing parameters as time intervals (using 
neutrosophic logic, the direct method). The basic distribution functions were found, and several mathematical 
properties of the distribution were derived. Several tables illustrating the behavior of the distribution were 
developed based on these properties. Equations for estimating the parameters of the distribution were found using 
three estimation methods. The performance of NGIR was evaluated using Monte Carlo simulations of five 
estimation methods, and the results of these simulations were compared using several statistical measures to 
determine which method is best for estimation. Practical application on mortality data confirmed the model's ability 
to represent complex data with high degrees of uncertainty, making it a powerful tool for epidemiological analysis. 
The results demonstrated that NGIR outperforms other neutrosophic distributions in terms of information criteria 
and goodness of fit. 
 
Keywords: Neutrosophic Logic, Inverse Rayleigh, COVID-19 Mortality, Monte Carlo Simulation, And 
Neutrosophic Incomplete Moments. 

INTRODUCTION 

Over the decades, the field of statistical distributions has undergone substantial progress. Initially, research 
focused on foundational distributions such as the normal and Poisson models. However, to address the growing 
complexity of real-world data. As challenges in data modeling became more intricate, especially in fields dealing 
with skewed, heavy-tailed, or highly variable data, researchers recognized the need for more adaptable probabilistic 
models. This increasing complexity motivated the development of new, more adaptable distribution families. 
Among the modern techniques proposed to address this challenge is the T-X family method, introduced in 2013 
by [1], which constructs new distributions by combining a transformation function (T) with a baseline distribution 
(X), enabling enhanced flexibility in modeling non-standard data pattern. This method is based on functional 
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transformations, where new distributions are created by integrating the PDF function of the distribution, but the 
upper bound of the integration must be a function that satisfies the conditions of the CDF function, rather than a 
random variable.  

Examples of these families include: Wei-G-family 2014 [2], BMO-Family 2015 [3], MKi-G-family 2020 [4], 
EW-G-family 2021 [5], WEE-X-2023 [6], NGOF-G-family 2023 [7], EOIW-G-family 2024 [8], HOE-Φ-family 
2024 [9], and  OLG family [10], all of these families, aim to provide great flexibility in data modeling. 

Neutrosophic logic, proposed by Florentin Smirnić in the late 1990s, represents a generalization of fuzzy logic 
by incorporating a tri-component structure. Instead of evaluating propositions solely based on degrees of truth or 
falsehood, neutrosophic logic introduces a third dimension -indeterminacy-allowing each component: truth (T), 
indeterminacy (I), and falsity (F) to independently assume any value within the interval [0, 1]. This more general 
structure provides the ability to handle uncertain or incomplete information, especially in complex systems. In 
statistics the use of neutrosophic logic has enabled the construction of neutrosophic probability distributions, 
which take into account the uncertainty by including uncertainty in the parameters of the classical statistical model. 

 For example, in a neutrosophic normal distribution, the mean and standard deviation may be non-precisely 
defined values and are expressed as neutrosophic intervals. On one hand, modern statistical methods such as the 
T-X family—introduce novel distributional forms capable of capturing atypical data behavior as follows ( [11], 
[12], [13], [14], [15], [16], [17]). 

On the other hand, neutrosophic logic contributes a robust framework for representing uncertainty by 
transforming classical parameters and random variables into interval-based expressions. Together, these 
approaches open new avenues for research and application in data-driven disciplines, broadening the theoretical 
and practical scope of both statistics and logic 

 neutrosophic Gompertz-G (NGo) family introduced which has neutrosophic cumulative density function 
(NCDF) and neutrosophic probability density functions (NPDF), respectively, in the forms: 

𝐺𝑁𝐺𝑜(𝑥𝑁) = 1 − 𝑒

𝑎𝑁
𝑏𝑁

(1−𝑒
𝑏𝑁

ℳ(𝑥𝑁)

1−ℳ(𝑥𝑁))

 
(1) 

𝑔𝑁𝐺𝑜(𝑥𝑁) =
𝑎𝑁𝓂(𝑥𝑁)

(1 − ℳ(𝑥𝑁))
2 𝑒

𝑏𝑁
ℳ(𝑥𝑁)

1−ℳ(𝑥𝑁)𝑒

𝑎𝑁
𝑏𝑁

(1−𝑒
𝑏𝑁

ℳ(𝑥𝑁)

1−ℳ(𝑥𝑁))

 
(2) 

Where ℳ(𝑥𝑁)  and 𝓂(𝑥𝑁)  are NCDF and NPDF for any baseline neutrosophic distribution with a 

neutrosophic random variable 𝑋𝑁, is defined as 𝑋𝑁 = 𝑑 +  𝑘𝐼, where 𝑑 represents the determined component 

and tI represents the indeterminate part. The values of 𝑘𝐼 are confined to the interval [𝑋𝐿 , 𝑋𝑈], where 𝑋𝐿 and 𝑋𝑈 

represent the lower and upper bounds of the random variable. Likewise, the values of 𝑘𝐼 fall within the range of 

[𝐼𝐿 , 𝐼𝑈]. It is crucial to note that the NGo family transforms into the classical Go family  when the lower limit 𝑋𝐿 

is identical to the upper bound 𝑋𝑈, and Neutrosophic shape parameters 𝑎𝑁, and 𝑏𝑁, which are within the ranges 

𝑎𝑁 ∈ [𝑎𝐿 , 𝑎𝑈], and 𝑏𝑁 ∈ [𝑏𝐿 , 𝑏𝑈]. 
The objective of this paper to introduce a novel probability distribution to model complex and uncertain 

statistical data like COVID-19 mortality data in neutrosophic paradigm. The aim of the study is to make the model 
as flexible as possible with a good fit to high variance and uncertainty of data and also to compare the performance 
of the model with known distributions. Additionally, the study intends to present efficient estimations of model 
parameters such as maximum likelihood (MLE) and application to real data to improve the accuracy of statistical 
analyses in epidemiological fields. 

Neutrosophic Gompertz Inverse Rayleigh (NGIR) Distribution 

The CDF and PDF for Inverse Rayleigh distribution, which is specified by a single parameter 𝑐. The following 
formulae [11] can be used to characterize these functions: 

ℳ(𝑥) = 𝑒
−

𝑐

𝑥2 (3) 

𝓂(𝑥) =
2𝑐

𝑥3
𝑒

−
𝑐

𝑥2 (4) 

The above functions (3 and 4) reflect as Neutrosophic function by replace the of the random variable  

𝑋𝑁   and parameter 𝑐 with each other with the neutrosophic random variable  X and neutrosophic parameter 
respectively 

 𝑐𝑁 ∈ [𝑐𝐿 , 𝑐𝑈], to get a form: 

ℳ(𝑥𝑁) = 𝑒
−

𝑐𝑁
𝑥𝑁
2

 (5) 
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𝓂(𝑥) =
2𝑐𝑁

𝑥𝑁
3 𝑒

−
𝑐𝑁
𝑥𝑁
2

 (6) 

We can get the NCDF for Neutrosophic Gompertz Inverse Rayleigh (NGIR) distribution by combine the 
equations 5 and 1 to get a form: 

𝐺(𝑥𝑁) = 1 − 𝑒

𝑎𝑁
𝑏𝑁

(

 
 
 
 
 

1−𝑒

𝑏𝑁
𝑒

−
𝑐𝑁
𝑥𝑁
2

1−𝑒

−
𝑐𝑁
𝑥𝑁
2

)

 
 
 
 
 

 

(7) 

We can get the NPDF for NGIR distribution by combine the equations 5, 6 and 2 to get a form: 

𝑔(𝑥𝑁) =
2𝑐𝑁𝑎𝑁𝑒

−
𝑐𝑁
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2

𝑥𝑁
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𝑒
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(8) 

The neutrosophic survival function for NGIR can also be obtained for distribution in the formula [18], 
[19]: 

𝑆𝑁(𝑥𝑁) = 𝑒

𝑎𝑁
𝑏𝑁

(

 
 
 
 
 

1−𝑒

𝑏𝑁
𝑒

−
𝑐𝑁
𝑥𝑁
2

1−𝑒

−
𝑐𝑁
𝑥𝑁
2

)

 
 
 
 
 

 

(9) 

The neutrosophic hazard function for NGIR can also be obtained for distribution in the formula [20], 
[21]: 

ℎ𝑁(𝑥𝑁) =
2𝑐𝑁𝑎𝑁𝑒

−
𝑐𝑁
𝑥𝑁
2

𝑥𝑁
3 (1 − 𝑒

−
𝑐𝑁
𝑥𝑁
2
)

2 𝑒

𝑏𝑁
𝑒

−
𝑐𝑁
𝑥𝑁
2

1−𝑒

−
𝑐𝑁
𝑥𝑁
2

 (10) 

Figures 1-5 present the graphs of the NGIR distribution functions for various intervals of the parameters. 

 
Figure 1. Plot NCDF for NGIR distribution with different interval values for parameters 
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Figure 2 3D-plot NCDF for NGIR distribution  

 
Figure 3. Plot NPDF for NGIR distribution with different interval values for parameters 

 
Figure 4. 3D-plot NPDF for NGIR distribution 

 
Figure 5 Plot Survival for NGIR distribution with different interval values for parameters 
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Figure 1:1 NCDF curve for NGIR distribution of various parameter values over ranges. It is observed that 
this curve represents the trend of the cumulative distribution with changes in the neutrosophic parameters which 
can be flexible in representing the data in the presence of uncertainty in the data. 

 Figure 2  presented the three-dimensional graph of the NCDF function .Which relates to how we can think 
about the neutrosophic random variable and its various parameters. It shows how the function changes as values 
of parameters vary within specified intervals. This three-dimensional curve thus underscores the very complex 
interplay between these variables, demonstrating how adaptable this function is to the data. 

Figure 3 illustrates the NPDF curve for an NGIR distribution with distinct parameters values. In this case, we 
observe how the probability density distribution is affected by neutrosophic coefficients and the curves undergo 
certain changes regarding their shape and spread based on the parameters. This highlights the model’s adaptability 
in capturing data that is idiosyncratic in nature, for example, extremely variant or highly skewed. 

Figure 4 shows a three-dimensional view of the NPDF function. This illustration gives a clear impression of 
how the probability density is affected when the values of the random variable and the parameters are altered. The 
three-dimensional curve exposes the intricate nature of the function and illustrates how the distribution is capable 
of adapting to data changes while still considering uncertainty. 

Figure 5 shows the neutrosophic survival function curve for an NGIR distribution with varying parameter 
values. The survival function defines the probability of a random variable staying above a certain value, and this 
curve shows the changes in this probability due to the changes in the neutrosophic coefficients. The curves show 
different patterns regarding the behavior of the survival function which demonstrates the capability of the model 
to describe data with large degrees of uncertainty. 

Properties for NGIR Distribution 

Mathematical Representation  

Proving the mathematical properties of the NGIR distribution poses problems in dealing with its more basic 
distribution functions. Hence, the NCDF and NPDF functions are simplified through the use of exponential 
function expansion and scalar expansion [22], [23] as follows 

𝐺(𝑥𝑁) = 1 − Ψ𝑒−𝑏𝑁(𝑘𝑁+𝑠𝑁)𝑥𝑁
−2

 (11) 

𝑔(𝑥𝑁) = 𝛾2bN𝑥𝑁
−3𝑒−𝑏𝑁(𝑡𝑁+𝑣𝑁+1)𝑥𝑁

−2
 (12) 

The functions GδN and gβNare also needed to prove some properties. Therefore, these functions are simplified 
in the same manner, as follows: 

𝐺𝛿𝑁(𝑥𝑁) = 𝑇𝑒−𝑏𝑁(𝑧𝑁+𝑝𝑁)𝑥𝑁
−2

 (13) 

𝑔𝛽𝑁(𝑥𝑁) = 2𝐸bN𝑥𝑁
−3𝑒−𝑏𝑁(𝑚𝑁+𝜀𝑁+𝛽𝑁)𝑥𝑁

−2
 (14) 

where Ψ = ∑
(−1)𝑗𝑁Γ(𝑘𝑁,𝑠𝑁)

𝑖𝑁!𝑘𝑁!𝑠𝑁!Γ(𝑘𝑁)
∞
𝑖𝑁=𝑗𝑁=𝑘𝑁=𝑠𝑁=0 𝑎𝑁

𝑖𝑁𝑏𝑁
𝑘𝑁−𝑖𝑁𝑗𝑁

𝑘𝑁 ,  

𝛾 = ∑
(−1)𝑗𝑁𝛤(𝑡𝑁+2,𝑣𝑁)

𝑖𝑁!𝑡𝑁!𝑣𝑁!𝛤(𝑡𝑁+2)
(
𝑖𝑁
𝑗𝑁

) 𝑎𝑁
𝑖𝑁+1

𝑏𝑁
−𝑖𝑁∞

𝑖𝑁=𝑗𝑁=𝑡𝑁=0 𝑏𝑁
𝑡𝑁(𝑗𝑁 + 1)𝑡𝑁,  

𝑇 = ∑
(−1)𝑙𝑁+𝑤𝑁+𝑟𝑁+𝑧𝑁𝛤(𝑧𝑁 ,𝑝𝑁)

𝑤𝑁!𝑧𝑁!𝑝𝑁!𝛤(𝑧𝑁)
(𝛿𝑁

𝑙𝑁
) (𝑤𝑁

𝑟𝑁
) 𝑎𝑁

𝑤𝑁𝑙𝑁
𝑤𝑁𝑏𝑁

𝑧𝑁−𝑤𝑁𝑟𝑁
𝑧𝑁∞

𝑙𝑁=𝑤𝑁=𝑟𝑁=𝑧𝑁=𝑝𝑁=0 , and  

𝐸 = ∑
(−1)𝑞𝑁𝛤(2𝛽𝑁+𝑚𝑁,𝜀𝑁)

𝑑𝑁!𝑚𝑁!𝑏𝑁
𝑑𝑁𝜀𝑁!𝛤(2𝛽𝑁+𝑚𝑁)

(
𝑑𝑁

𝑞𝑁
)∞

𝑑𝑁=𝑞𝑁=𝑚𝑁=𝜀𝑁=0 𝑎𝑁
𝑑𝑁+𝛽𝑁𝛽𝑁

𝑑𝑁𝑏𝑁
𝑚𝑁(𝛽𝑁 + 𝑞𝑁)𝑚𝑁. 

The Neutrosophic Moments 

Let 𝑋𝑁 be any neutrosophic random variable, then the 𝑛𝑡ℎ neutrosophic moments for any neutrosophic can 
expressing as form [24]: 

𝜇𝑛
′ = 𝐸(𝑥𝑁

𝑛) = ∫ 𝑥𝑁
𝑛

∞

0

𝑔(𝑥𝑁)𝑑𝑥𝑁  

Substitution equation 12 in above equation to get the 𝑛𝑡ℎ neutrosophic moments for NGIR distribution by 
form: 

𝜇𝑛
′ = 𝛾 ∫ 𝑥𝑁

𝑛
∞

0

2bN𝑥𝑁
−3𝑒−𝑏𝑁(𝑡𝑁+𝑣𝑁+1)𝑥𝑁

−2
𝑑𝑥𝑁  

By solving the above integral, we obtain the neutrosophic moment function for the distribution in the form: 

𝜇𝑛
′ = 𝛾[𝑏𝑁(𝑡𝑁 + 𝑣𝑁 + 1)]

𝑛

2
−1Γ(1 −

𝑛

2
) (15) 

In order to identify the nature of the distribution in finding moments, as well as the values of variance, 
skewness, and kurtosis, Table 1 is prepared, as follows: 

 



Journal of Cultural Analysis and Social Change, 10(4), 1766-1780 
 

© 2025 by Author/s  1771 
 

Table.1 some intervals of moments for NGIR distribution 

𝑎𝑁 𝑏𝑁 𝑐𝑁 𝝁̀𝟏𝑵
 𝝁̀𝟐𝑵

 𝝁̀𝟑𝑵
 𝝁̀𝟒𝑵

 𝝈𝑵
𝟐  𝑺𝑵 𝑲𝑵 

[0
.6

,1.6
] 

[0
.3

,1.3
] 

[0
.1,1.1] 

[0.384902, 

0.53043] 
[0.162865, 
0.430025] 

[0.074459, 
0.357749] 

[0.03625, 
0.30407] 

[0.014715, 

0.148669] 
[1.132859, 
1.268638] 

[1.366638, 
1.644316] 

[0
.2

,1.2
] 

[0.541043, 

0.480837] 
[0.322313, 
0.394314] 

[0.20705, 
0.331147] 

[0.141304, 
0.283666] 

[0.029585, 
0.163109] 

[1.13151, 
1.33739] 

[1.360186, 
1.824414] 

[0
.5

,1.5
] 

[0
.3

,1.3
] 

[0.61549, 

0.446578] 
[0.417485, 
0.370406] 

[0.300466, 
0.313993] 

[0.226594, 
0.271063] 

[0.038657, 
0.170974] 

[1.11387, 
1.392849] 

[1.300068, 
1.97567] 

[0
.4

,1.4
] 

[0.606161, 

0.401088] 
[0.445274, 
0.335366] 

[0.343758, 
0.286165] 

[0.275817, 
0.248377] 

[0.077842, 
0.174494] 

[1.156944, 
1.473457] 

[1.391128, 
2.208377] 

[0
.9

,1.9
]] 

[0
.7

,1.7
] 

[0
.5

,1.5
] 

[0.634303, 

0.414714] 
[0.464307, 
0.348283] 

[0.355943, 
0.298165] 

[0.283149, 
0.259431] 

[0.061967, 
0.176295] 

[1.12505, 
1.450636] 

[1.31342, 
2.13874] 

[0
.6

,1.6
] 

[0.595121, 

0.373748] 
[0.452961, 
0.316033] 

[0.35893, 
0.272083] 

[0.293708, 
0.237843] 

[0.098792, 
0.176345] 

[1.177385, 
1.53145] 

[1.431512, 
2.381368] 

[0
.9

,1.9
] 

[0
.7

,1.7
] 

[0.56983, 

0.343111] 
[0.445838, 
0.292244] 

[0.361208, 
0.25313] 

[0.300932, 
0.222399] 

[0.121132, 
0.174519] 

[1.213365, 
1.602233] 

[1.513958, 
2.60401] 

[0
.8

,1.8
] 

[0.462908, 

0.292924] 
0.37013, 

0.250921] 
[0.305314, 
0.218365] 

[0.258225, 
0.192611] 

[0.155846, 
0.165116] 

[1.35586, 
1.737313] 

[1.884902, 
3.059204] 

 

Results indicate that the mean 𝜇̀1𝑁N appears to exhibit a gradual contraction with increasing the parameter 

value, particularly as 𝑐𝑁_N transitions from the greatest to the smallest interval where the mean decreases. This 
suggests that the distribution is pulled toward lower values as the parameters increase and may represent the nature 
of an NGIR distribution in which large parameter values tend to shift the distribution in the left tail. There is, 
however, a significant widening of the variance with increasing parameters which suggests a moderate to strong 
level of dispersion in the data. This behavior can be explained by the neutrosophic nature of the distribution which 
allows for greater uncertainty in the data due to the wide range of parameter values, resulting in higher variance. 
Looking at the shape of the distribution, the skewness coefficient shows positive values for all groups indicating 
that the distribution is always right-skewed. This implies that the distribution possibly has thicker tails compared 
to a normal distribution 

The Neutrosophic Moment Generating Function 

The Neutrosophic Moment Generating Function (NMGF) for NGIR distribution, from neutrosophic 
moment function and exponential expansion can be get a form [25]: 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑔(𝑥𝑁)𝑑𝑥
∞

0

  

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!

∞

𝑟=0

[−𝛾𝑏𝑁

𝑛

2 (𝑏𝑁(𝑡𝑁 + 𝑣𝑁 + 1))
𝑛−2

2 Γ (1 −
𝑛

2
)] (16) 

The Neutrosophic Characteristic Function 

The Neutrosophic Characteristic function (NCF) for NGIR distribution, from neutrosophic moment function 
and exponential expansion can be get a form [25]: 
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𝑄𝑥(𝑡) = 𝐸(𝑒𝑖𝑡𝑥) = ∫ 𝑒𝑖𝑡𝑥𝑔(𝑥𝑁)𝑑𝑥
∞

0

  

𝑄𝑥(𝑡) = ∑
(𝑖𝑡)𝑣

𝑣!

∞

𝑣=0

 [−𝛾𝑏𝑁

𝑛

2 (𝑏𝑁(𝑡𝑁 + 𝑣𝑁 + 1))
𝑛−2

2 Γ (1 −
𝑛

2
)] (17) 

The Neutrosophic Incomplete Moments 

Let 𝑋𝑁  be any neutrosophic random variable, then the 𝑛𝑡ℎ  neutrosophic Incomplete moments for any 
neutrosophic can expressing as form [24]: 

𝑀𝑛(𝑦𝑁) = ∫ 𝑥𝑁
𝑛

𝑦𝑁

0

𝑔(𝑥𝑁)𝑑𝑥𝑁  

Substitution equation 12 in above equation to get the 𝑛𝑡ℎ  neutrosophic Incomplete moments for NGIR 
distribution by form: 

𝑀𝑛(𝑦𝑁) = 𝛾 ∫ 𝑥𝑁
𝑛

𝑦𝑁

0

2bN𝑥𝑁
−3𝑒−𝑏𝑁(𝑡𝑁+𝑣𝑁+1)𝑥𝑁

−2
𝑑𝑥𝑁  

By solving the above integral, we obtain the neutrosophic moment function for the distribution in the form: 

𝑀𝑛(𝑦𝑁) = 𝛾[𝑏𝑁(𝑡𝑁 + 𝑣𝑁 + 1)]
𝑛

2
−1Γ((1 −

𝑛

2
) ,

𝑏𝑁(𝑡𝑁 + 𝑣𝑁 + 1)

𝑦𝑁
2 ) (18) 

Neutrosophic Probability Weighted Moments 

     We may calculate the Neutrosophic probabilistic weighted moments of the NGIR distribution by applying the 
following equation [26]: 

𝜏𝑘,𝛿𝑁
= 𝐸 (𝑥𝑁

𝑘𝐺𝛿𝑁(𝑥𝑁)) = ∫ 𝑥𝑁
𝑘𝑔(𝑥𝑁)𝐺𝛿𝑁(𝑥𝑁)𝑑𝑥𝑁

∞

−∞

  

By substitute equation 12 and 13 in above equation to get a formula: 

𝜏𝑘,𝛿𝑁
= 𝛾𝑇 ∫ 𝑥𝑁

𝑘2bN𝑥𝑁
−3𝑒−𝑏𝑁(𝑡𝑁+𝑣𝑁+𝑧𝑁+𝑝𝑁+1)𝑥𝑁

−2
𝑑𝑥

∞

0

  

Then, integrate the preceding equation to obtain the final formula: 

𝜏𝑘,𝛿𝑁
= 𝛾𝑇[𝑏𝑁𝜃]

𝑘

2
−1Γ (1 −

𝑘

2
) , 𝜃 = 𝑡𝑁 + 𝑣𝑁 + 𝑧𝑁 + 𝑝𝑁 + 1 (19) 

where 𝑘 = 0 ⟹ 𝜏0,𝛿𝑁
=

𝛾𝑇

𝑏𝑁𝜃
 

Neutrosophic Quantile Function 

Neutrosophic quantile function is the inverse of the NCDF. Mathematically, if 𝐺(𝑥𝑁) is the NCDF of a 

Neutrosophic random variable, then the Neutrosophic quantile function 𝑄𝑁(𝑝) is defined by the relationship: 

𝑄𝑁(𝑞) = 𝐺−1(𝑥𝑁) = 𝑖𝑛𝑓{𝑥𝑁 ∈ ℝ2: 𝐺(𝑥𝑁) > 𝑞} (20) 

where 𝑞 ∈ [0,1] represents the desired probability. In short, the quantile function returns the value 𝑥𝑁 for 

which 𝑃(𝑋𝑁 ≤ 𝑥𝑁) = 𝑞, put:  

𝑞 = 1 − 𝑒

𝑎𝑁
𝑏𝑁

(

 
 
 
 
 

1−𝑒

𝑏𝑁
𝑒

−
𝑐𝑁
𝑥𝑁
2

1−𝑒

−
𝑐𝑁
𝑥𝑁
2

)

 
 
 
 
 

 

(21) 

Then we get a final form: 

𝑥𝑁 =
√

−𝑐𝑁

log [

1

𝑏𝑁
log𝜋

(1+
1

𝑏𝑁
log𝜋)

]

, 𝜋 = 1 −
𝑏𝑁

𝑎𝑁
log(1 − 𝑞) 

(22) 

The following table shows the values of the Neutrosophic quantile function with different parameter intervals. 
Table 2: Neutrosophic Quantile function for NGIR distribution 

𝑞 (𝒂𝑵, 𝒃𝑵, 𝒄𝑵) 

[0.5, 1.5], [0.4, 1.4], [0.7,1.7], [0.6,1.6], [0.5,1.5], 
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[ 0.7, 1.7] 
[0.9, 1.9] 

[0.7, 1.7] 
[0.2, 1.2] 

[ 0.8.1,8] 
[0.5,1.5] 

[0.4,1.4] 
[0.2,1.2] 

[ 0.9,1.9] 
[1,2] 

0.1 [0.7058782, 0
.8271578] 

[0.3496091,0.664
6916] 

[0.4898231,0.
7202573] 

[0.3218739,0.651
6492] 

[0.7408879, 0.8
477526] 

0.2 [0.8405100, 0
.9412064] 

[0.4190495, 0.75
76202] 

[0.5756444,0.
8165176] 

[0.3838953,0.741
8687] 

[0.8774080, 0.9
632432] 

0.3 [0.9469469, 1
.0294006] 

[0.4731563, 0.82
93347] 

[0.6439112,0.
8909101] 

[0.4351759,0.812
6293] 

[0.9829988, 1.0
518574] 

0.4 [1.0401777, 1
.1063648] 

[0.5198557, 0.89
17266] 

[0.7043404,0.
9558839] 

[0.4820498,0.875
2755] 

[1.0738395, 1.1
285727] 

0.5 [1.1266220, 1
.1779766] 

[0.5625759, 0.94
96361] 

[0.7609793,1.
0164873] 

[0.5273073,0.934
3506] 

[1.1568185, 1.1
995148] 

0.6 [1.2105646, 1
.2479888] 

[0.6035596, 1.00
60239] 

[0.8166026,1.
0758620] 

[0.5729722,0.992
9062] 

[1.2362943, 1.2
684365] 

0.7 [1.2962159, 1
.3200510] 

[0.6449170, 1.06
38906] 

[0.8739528,1.
1371230] 

[0.6213306,1.053
9394] 

[1.3164778, 1.3
389694] 

0.8 [1.3899263, 1
.3996793] 

[0.6896758, 1.12
76801] 

[0.9373680,1.
2050287] 

[0.6761733,1.122
2641] 

[1.4032822, 1.4
165051] 

0.9 [1.5075462, 1
.5008758] 

[0.7453438, 1.20
84484] 

[1.0178423,1.
2915840] 

[0.7477535,1.210
3214] 

[1.5111508, 1.5
144485] 

Based on the conclusions from the table, it can be noted that the quantile function exhibits different behavior 
primarily based on the value of the parameter and the probability q As shown in the table above, when q equals 
0.1, the quantile value for the first set of parameters is [(0.5,1.5),(0.7,1.7),(0.9,1.9)]=[0.7058782,0.8271578]. The 
relatively wide range indicates a high degree of uncertainty which is consistent with the nature of neutrosophic 
data that deals with ambiguity and indeterminacy. Additionally we also note that for q value equal to 0.5, which is 
50%, it can be seen that the quantile value is increasing for all sets of parameters which is more pronounced in 
lower ranges of q, even if that means lower quantile values.  

In general all the results from the table suggest that the neutrosophic quantile function for the NGIR 
distribution does indeed cover wide ranges of probability while accounting for uncertainty pertaining to the 
parameters and yielding results with high value for complex data where, uncertainty and imprecision abound. It is 
also noted that the results are highly sensitive towards choosing the right intervals for declaring the range of the 
quantile values. 

Neutrosophic Rényi Entropy 

Neutrosophic Rényi Entropy for NGIR distribution obtained by form [27]: 

𝐼𝑅(𝛽𝑁) =
1

1 − 𝛽𝑁
𝑙𝑜𝑔∫ 𝑔(𝑥𝑁)𝛽𝑁𝑑𝑥𝑁

∞

0

  

Substituting equation 14 into the equation above, we get: 

𝐼𝑅(𝛽𝑁) =
1

1 − 𝛽𝑁
𝑙𝑜𝑔∫ 2𝐸bN𝑥𝑁

−3𝑒−𝑏𝑁(𝑚𝑁+𝜀𝑁+𝛽𝑁)𝑥𝑁
−2

𝑑𝑥𝑁

∞

0

 (23) 

By solving the above integral, we obtain the neutrosophic moment function for the distribution in the form: 

𝐼𝑅(𝛽𝑁) =
1

1 − 𝛽𝑁
𝑙𝑜𝑔 [

𝐸

(𝑚𝑁 + 𝜀𝑁 + 𝛽𝑁)
] (24) 

Estimation Parameters for NGIR Distribution 

Maximum Likelihood Estimation - MLE 

Maximum likelihood estimation is defined as a method in which the values of the unknown parameters of a 
statistical model are determined by maximizing the likelihood function, which represents the probability of 

observing the given data under the proposed model. Mathematically, if we have a sample of data 𝑋𝑁 =
(𝑥𝑁1 , 𝑥𝑁2, . . . , 𝑥𝑁𝑛) and a probability distribution 𝑓(𝑥𝑁|𝜃𝑁) where 𝜃𝑁 are unknown parameters, the likelihood 
function is written as [28], [29]: 

𝐿(𝛩𝑁, 𝑥𝑁) = ∏𝑔(𝑥𝑁)

𝑛

𝑖=1
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𝐿(𝛩𝑁, 𝑥𝑁) = ∏
𝑎𝑁2bN𝑥𝑁

−3𝑒−𝑏𝑁𝑥𝑁
−2

(1 − 𝑒−𝑏𝑁𝑥𝑁
−2

)
2 𝑒

𝑏𝑁
𝑒−𝑏𝑁𝑥𝑁

−2

1−𝑒
−𝑏𝑁𝑥𝑁

−2
𝑒

𝑎𝑁
𝑏𝑁

(

 
 

1−𝑒
𝑏𝑁

𝑒−𝑏𝑁𝑥𝑁
−2

1−𝑒
−𝑏𝑁𝑥𝑁

−2

)

 
 

𝑛

𝑖=1

 

 

We compute the log- likelihood: 

𝐿 = 𝑛 log 𝑎𝑁 + 𝑛 log(2bN) − 3∑log𝑥iN

𝑛

𝑖=1

− ∑𝑏𝑁𝑥𝑖𝑁
−2

𝑛

𝑖=1

+ 𝑏𝑁 ∑
𝑒−𝑏𝑁𝑥𝑖𝑁

−2

1 − 𝑒−𝑏𝑁𝑥𝑖𝑁
−2  

𝑛

𝑖=1

 

    −2∑log (1 − 𝑒−𝑏𝑁𝑥𝑖𝑁
−2

)

𝑛

𝑖=1

+
𝑎𝑁

𝑏𝑁
∑1 − 𝑒

𝑏𝑁
𝑒
−𝑏𝑁𝑥𝑖𝑁

−2

1−𝑒
−𝑏𝑁𝑥𝑖𝑁

−2

𝑛

𝑖=1

 

(25) 

Ordinary Least Squares - LSE 

The ordinary least squares method is used to estimate the coefficients by minimizing the sum of squared 
differences between the observed and predicted values. The equation for the method is given by the formula [30], 
[31]: 

𝜑(𝜃𝑁) = ∑ [𝐺(𝑥𝑁𝑖) −
𝑖

𝑛+1
]
2

𝑚
𝑖=1    

𝜑(𝜃𝑁) = ∑

[
 
 
 
 
 
 

1 − 𝑒

𝑎𝑁
𝑏𝑁

(

 
 

1−𝑒
𝑏𝑁

𝑒−𝑏𝑁𝑥𝑁
−2

1−𝑒
−𝑏𝑁𝑥𝑁

−2

)

 
 

−
𝑖

𝑛 + 1

]
 
 
 
 
 
 
2

𝑛

𝑖=1

 (26) 

Weighted Least Squares - WLS 

The ordinary least squares method is used to estimate the coefficients by minimizing the sum of squared 
differences between the observed and predicted values. The equation for the method is given by the formula [25], 
[32]: 

𝑊(𝜃𝑁) = ∑  𝑊𝑖 [𝐺(𝑥𝑁𝑖) −
𝑖

𝑛+1
]
2

𝑛
𝑖=1    

𝑊(𝜃𝑁) = ∑ 𝑊𝑖

[
 
 
 
 
 
 

1 − 𝑒

𝑎𝑁
𝑏𝑁

(

 
 

1−𝑒
𝑏𝑁

𝑒−𝑏𝑁𝑥𝑁
−2

1−𝑒
−𝑏𝑁𝑥𝑁

−2

)

 
 

−
𝑖

𝑛 + 1

]
 
 
 
 
 
 
2

𝑛

𝑖=1

 (27) 

Simulation 

    Estimating complex distributions with random sample methodologies employs Monte Carlo algorithms. For 
this study, these algorithms were utilized to assess how accurately five estimators (MLE, LSE, WLSE, ADE, 
RTADE) estimate the neutrosophic (fuzzy bounds, not sharply defined) parameter NGIR distribution across 
sample sizes N = 50, 100, 150, 200, … up to 1000. The outcomes were evaluated through mean square error 
(MSE) and root mean square error (RMSE) alongside bias calculations [33], [34]. The simulation results 

demonstrate estimating parameters 𝑎𝑁 , 𝑏𝑁, and 𝑐𝑁  for compound neutrosophic intervals were the most accurate 
at sample sizes N = 50, 100, 150, and 200. Those sample sizes are presented in Table 3 along with the beyond 
bound sample ranges. 

Table 3: Monte Carlo simulations conducted for NGIR distribution 

𝒂𝑵 = [  𝟑  , 𝟒    ], 𝒃𝑵 = [ 𝟏. 𝟓   ,𝟏. 𝟗   ], 𝒄𝑵 = [𝟒   ,𝟓  ] 

N Est. 
Ess. 
Par. MLE LSE WLSE 

 
ADE 

 
RTADE 

50 Mean  

𝒂𝑵̂ 
[3.9917893, 
5.143415] [4.738623, 5.707372] [4.328175, 5.373994] 

[4.439933, 
5.586339] 

[13.66783, 
16.72482] 

𝒃𝑵̂ 
[1.48804362, 
1.96946326] 

[0.6342964, 
0.9787356] 

[0.9317916, 
1.2897713] 

[1.0576053, 
1.4499344] 

[-24.13027, -
19.71914] 

𝒄𝑵̂ 
[4.1572593, 
5.1066804] 

[4.03414323, 
4.8707255] 

[4.03280694, 
4.90882874] 

[4.1392705, 
5.04556834] 

[0.4770653, 
0.6105288] 
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MSE 

𝒂𝑵̂ 
[11.7349440, 
20.590970] 

[36.820765, 
42.360068] 

[22.351758, 
31.253529] 

[21.257898, 
32.830854] 

[156.29793, 
213.87533] 

𝒃𝑵̂ 
[0.91061798, 
1.61547104] 

[5.3305295, 
5.9705607] 

[2.4585748, 
3.6179930 

[2.1103319, 
3.1313901] 

[538.68577, 
785.70433] 

𝒄𝑵̂ 
[1.3654623, 
1.7436138] 

[2.28251487, 
2.9297338] 

[1.87948845, 
2.39856760] 

[1.7628712, 
2.21794708] 

[12.4434642, 
19.3260501] 

RMSE 

𝒂𝑵̂ 
[3.4256305, 
4.537727] [6.068012, 6.508461] [4.727765, 5.590486] 

[4.610629, 
5.729821] 

[12.50192,     14.
62448] 

𝒃𝑵̂ 
[0.95426306, 
1.27101182] 

[2.3087939, 
2.4434731] 

[1.5679843, 
1.9021022] 

[1.4526982, 
1.7695734] 

[23.20961, 
28.03042] 

𝒄𝑵̂ 
[1.1685300, 
1.3204597  ] 

[1.51079941, 
1.7116465] 

[1.37094436, 
1.54873097] 

[1.3277316, 
1.48927737] 

[3.5275295, 
4.3961404] 

Bias 

𝒂𝑵̂ 
[0.9917893, 
1.143415] [1.707372, 1.738623] [1.328175, 1.373994] 

[1.439933, 
1.586339] 

[10.66783,     12.
72482] 

𝒃𝑵̂ 
[0.01195638, 
0.06946326] 

[0.8657036, 
0.9212644] 

[0.5682084, 
0.6102287] 

[0.4423947, 
0.4500656] 

[21.21914, 
26.03027] 

𝒄𝑵̂ 
[0.1066804, 
0.1572593] 

[0.1292745, 
0.03414323] 

[0.03280694, 
0.09117126] 

[0.04556834,0.13
92705] 

[3.5229347, 
4.3894712] 

100 

Mean 

𝒂𝑵̂ 
[3.3371217, 
4.5925015] 

[3.5789559, 
4.8551058] 

[3.4446231, 
4.7344332  ] 

[3.5099832, 
4.8252873] 

[14.01895,     17.
32226] 

𝒃𝑵̂ 
[1.51818277, 
1.91500837] 

[1.1506284, 
1.4378564] 

[1.2995323, 
1.608203] 

[1.3361653, 
1.6528578] 

[-24.99249, -
20.22584] 

𝒄𝑵̂ 
[4.02112953, 
5.06446168] 

[3.92451635, 
4.90217145] 

[3.96565557, 
4.97987068] 

[4.01959377, 
5.04276528] 

[0.4287158, 
0.5636387] 

MSE 

𝒂𝑵̂ 
[3.6125607, 
7.3270065] 

[8.4291834, 
16.4321908] 

[5.6892027, 
11.5266142] 

[5.4656765, 
10.9631504] 

[150.43933,   207
.42677] 

𝒃𝑵̂ 
[0.35229733, 
0.70861960] 

[1.2640953, 
2.1786850] 

[0.6789265, 
1.249400] 

[0.6277198, 
1.1773632] 

[532.42010, 
785.54847] 

𝒄𝑵̂ 
[0.62821559, 
0.91991102] 

[1.15557313, 
1.68417783] 

[0.82940438, 
1.25063673] 

[0.76376007, 
1.17656029] 

[12.7704225, 
19.7189451] 

RMSE 

𝒂𝑵̂ 
[1.9006738, 
2.7068444] 

[2.9033056, 
4.0536639] 

[2.3852050, 
3.3950868] 

[2.3378786, 
3.3110648] 

[12.26537,     14.
40232] 

𝒃𝑵̂ 
[0.59354640, 
0.84179546] 

[1.1243199, 
1.4760369] 

[0.8239700, 
1.117766] 

[0.7922877, 
1.0850637] 

[23.07423, 
28.02764] 

𝒄𝑵̂ 
[0.79260052, 
0.95911992] 

[1.07497588, 
1.29775877] 

[1.117766, 
1.11831871] 

[0.87393367, 
1.08469364] 

[3.5735728, 
4.4406019] 

Bias 

𝒂𝑵̂ 
[0.3371217, 
0.5925015] 

[0.5789559, 
0.8551058] 

[0.4446231, 
0.7344332] 

[0.5099832, 
0.8252873] 

[11.01895,     13.
32226] 

𝒃𝑵̂ 
[0.01818277, 
0.01500837] 

[0.3493716, 
0.4621436] 

[0.2004677, 
0.291797] 

[0.1638347, 
0.2471422] 

[21.72584, 
26.89249] 

𝒄𝑵̂ 
[0.02112953, 
0.06446168] 

[0.07548365, 
0.09782855] 

[0.03434443, 
0.03434443] 

[0.01959377, 
0.04276528] 

[3.5712842, 
4.4363613] 

150 

Mean 

𝒂𝑵̂ 
[3.2330815, 
4.3825372] [3.5090559, 4.522526] 

[3.3452902, 
4.4250597] 

[3.3715099, 
4.4821055] 

[14.25986,     18.
02245] 

𝒃𝑵̂ 
[1.51730916, 
1.92175581] 

[1.2300223, 
1.6148214] 

[1.3665041, 
1.7516043] 

[1.3858205, 
1.7765209] 

[-20.57370, -
26.00290] 

𝒄𝑵̂ 
[4.02293709, 
5.05377072] 

[3.992741011, 
4.92003202] 

[4.005035421, 
4.98370275] 

[4.02867704, 
5.02388901] 

[0.4154863, 
0.5407019] 

MSE 

𝒂𝑵̂ 
[2.2530450, 
4.2097783] [5.7130047, 9.617191] 

[3.4001204, 
6.2313956] 

[3.2735087, 
5.9360876] 

[144.75355,   205
.89467] 

𝒃𝑵̂ 
[0.22752012, 
0.38801520] 

[0.7809542, 
1.2037000] 

[0.3974947, 
0.6700489] 

[0.3939752, 
0.6270253] 

[524.65840, 
797.86398] 

𝒄𝑵̂ 
[0.41647403, 
0.61431219] 

[0.802778843, 
1.20738948] 

[0.557719932, 
0.83127037] 

[0.52553410, 
0.78372013] 

[12.8601771, 
19.9116158] 

RMSE 

𝒂𝑵̂ 
[1.5010147, 
2.0517744] [2.3901893, 3.101160] 

[1.8439415, 
2.4962764] 

[1.8092840, 
2.4364087] 

[12.03136,      14.
34903] 

𝒃𝑵̂ 
[0.47699069, 
0.62290866] 

[0.8837161, 
1.0971326] 

[0.6304718, 
0.8185651] 

[0.6276745, 
0.7918493] 

[22.90542, 
28.24649] 

𝒄𝑵̂ 
[0.64534799, 
0.78378070] 

[0.895979265, 
1.09881276] 

[0.746806489, 
0.91174030] 

[0.72493731, 
0.88527969] 

[3.5861089, 
4.4622434] 

Bias 

𝒂𝑵̂ 
[0.2330815, 
0.3825372] [0.5090559, 0.522526] 

[0.3452902, 
0.4250597] 

[0.3715099, 
0.4821055] 

[11.25986,     14.
02245] 

𝒃𝑵̂ 
[0.01730916, 
0.02175581] 

[0.2699777, 
0.2851786] 

[0.1334959, 
0.1483957] 

[0.1141795, 
0.1234791] 

[22.07370, 
27.90290] 

𝒄𝑵̂ 
[0.02293709, 
0.05377072] 

[0.007258989, 
0.07996798] 

[0.005035421, 
0.01629725] 

[0.02867704, 
0.02388901    ] 

[3.5845137, 
4.4592981] 

200 

Mean 

𝒂𝑵̂ 
[3.178766, 
4.3341579] 

[3.2757924, 
4.5264064] 

[3.1961086, 
4.4394571] 

[3.2328265, 
4.469106] 

[14.23228, 14.23
228] 

𝒃𝑵̂ 
[1.5009392485, 
1.90880226] 

[1.3323917, 
1.6457617] 

[1.41553979, 
1.7529745] 

[1.42216229, 
1.7729688] 

[-20.53375, -
26.14192] 

𝒄𝑵̂ 
[4.01770083, 
5.0534642] 

[3.95167704, 
4.98833161] 

[3.97905509, 
5.02742585  ] 

[4.003741712, 
5.05069556] 

[0.40112790.530
2202] 

MSE 

𝒂𝑵̂ 
[1.469628, 
3.0763090] 

[3.5873899, 
7.0042411] 

[2.1473035, 
4.6317177] 

[2.0778749, 
4.417308] 

[129.94555,    20
7.95695] 

𝒃𝑵̂ 
[0.1430850599, 
0.28597103] 

[0.4365696,0.8751362
] 

[0.22788066, 
0.4815695] 

[0.22701091, 
0.4589775] 

[493.35856, 
804.27716] 
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𝒄𝑵̂ 
[0.29702909, 
0.4556755] 

[0.58842419, 
0.87715491] 

[0.39471441, 
0.61731889  ] 

[0.373341717, 
0.58668344] 

[12.9606399, 
20.0024963] 

RMSE 

𝒂𝑵̂ 
[1.212282, 
1.7539410] 

[1.8940406, 
2.6465527] 

[1.4653681, 
2.1521426] 

[1.4414836, 
2.101739] 

[11.39937,      14.
42071] 

𝒃𝑵̂ 
[0.3782658588, 
0.53476259] 

[0.6607341, 
0.9354871] 

[0.47736848, 
0.6939521] 

[0.47645662, 
0.6774788] 

[22.21168, 
28.35978] 

𝒄𝑵̂ 
[0.54500375, 
0.6750374] 

[0.76708813, 
0.93656549] 

[0.62826301, 
0.78569644  ] 

[0.611016953, 
0.76595264] 

[3.6000889, 
4.4724150] 

Bias 

𝒂𝑵̂ 
[0.178766, 
0.3341579] 

[0.2757924, 
0.5264064] 

[0.1961086, 
0.4394571] 

[0.2328265, 
0.469106] 

[11.23228,     14.
11899] 

𝒃𝑵̂ 
[0.0009392485, 
0.00880226] 

[0.1676083, 
0.2542383] 

[0.08446021, 
0.1470255] 

[0.07783771, 
0.1270312] 

[22.03375, 
28.04192] 

𝒄𝑵̂ 
[0.01770083, 
0.0534642] 

[0.04832296, 
0.01166839] 

[0.02094491, 
0.02742585] 

[0.003741712, 
0.05069556] 

[3.5988721, 
4.4697798] 

From table 3: 

• MLE: The MLE estimations exhibited the lowest level of bias (Bias) and the lowest mean squared error 
(MSE) for the majority of parameters, particularly as the sample size increased (N = 200). In case of a 
sample size of 200, the MLE had lower bias than the LSE for all parameters and lower MSE. This is the 
advantage that MLE have received, as it can take full advantage of distribution probability characteristics, 
therefore, being capable of performance well enough when handling complex data. 

• WLSE: It ranked second best, better than LSE but not as best as MLE. Improving with more samples is 
what we saw. This is because WLSE can fix heteroscedasticity since it gives different weights to 
observations; hence, it reduces outlier impacts. 

• LSE: LSE performed less efficiently compared to the earlier two methods; it recorded higher values for 
both bias and mean square error. The weakness of this method is attributed to the strict assumptions of 
LSE, like homogeneity of variance and correlation-free errors, which may not hold in real data.ADE: ADE 
recorded intermediate values for bias (BIAS) and mean square error (MSE) compared to MLE and WLSE, 
but outperformed LSE in some cases. ADE showed improvement with increasing sample size, but this 
improvement was less pronounced compared to MLE 

• RTADE: RTADE executed the worst among all methods, with a very high bias. This poor performance 
is due to RTADE focusing on the right tail of the distribution; it is highly sensitive to outliers in 
neutrosophic data, where wide parameter intervals are additional sources of instability. 

• While WLSW and ADE perform okay in some situations, MLE is still the best method for estimating 
parameters of the NGIR distribution because of its high accuracy and stability. RTADE seems 
inappropriate for this model due to its huge bias and skewing over wide intervals. WLSW and ADE should 
be used only as supplementary means of checking results; they cannot replace MLE in actual applications. 

Application 

Given the complexities associated with analyzing epidemiological data, especially in the context of the 
COVID-19 pandemic [35], there is a need for flexible probability distributions capable of representing the high 
uncertainty and variability in the data. The NGIR distribution provides an advanced mathematical framework for 
modeling such data, incorporating the concept of interval-valued parameters to capture the inherent ambiguity in 
the data. In this section, the performance of the NGIR distribution is evaluated compared to six other neutrosophic 

distributions, e.g., Neutrosophic Odd Lomax Inverse Rayleigh (NOLIR), neurosophic Kumaraswamy (NKuIR), 

Neutrosophic Exponeted Generalized Inverse Rayleigh (NEGIR), neutrophilic log-gamma Inverse Rayleigh 

(NLGIR), neutrophilic beta Inverse Rayleigh (NBIR), and neutrophilic Inverse Rayleigh (NIR), using Dutch 
COVID-19 mortality data. The comparison relies on integrated informatics (AIC [41], CAIC [36], BIC [37] , HQIC 
[38]) and statistical criteria (p-value, Anderson-Darling (A) [39], Cramér-von Mises (W) [4], and Kolmogorov-
Smirnov (KS) [40], [41]) to identify the best model and statistical measures.  

The following table presents a statistical summary of a variable (Var) measured in a sample of 30 observations 
(N = 30), along with some statistical values for the data used. The data are presented in the form of neutrosophic 
intervals (interval-valued), meaning that each statistic has a lower and an upper limit. 

 
Var N Mean SD Median Trimmed Mad Min Max Range SK KU Se 

1 

3
0
 

[6
.14

, 6
.3

6
] 

[3
.5

1, 3
.5

6
] 

[5
.3

7
, 5

.6
4
] 

[5
.7

9
 , 6

] 

[2
.7

2
, 2

.8
5
] 

[1.2
7
 , 1.3

4
] 

[14
.9

2
,15

.6
6
] 

[13
.6

4
,14

.3
3
] 

[0
.8

, 0
.8

2
] 

[-0
.18

,0
.3

] 

[0
.6

4
,0

.6
5
] 

Tables 4 to 6 show the results of comparing the NGIR distribution with other distributions. 
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Table 4. results of the criteria for the distributions 
Dist. -log AIC CAIC BIC HQIC 

NGIR [76.3853, 76.97917] [158.7706, 159.9583] [159.6937, 160.8814] [162.9742, 164.1619] 
[160.1154, 161.30
31] 

NOLIR [83.4867, 84.64634] [172.9734, 175.2927] [173.8965, 176.2158] [177.177, 179.4963] 
[174.3182, 176.63
75] 

NKuIR 
[82.26124, 83.2033
8] [170.5225, 172.4068] [171.4456, 173.3298] [174.7261, 176.6104] 

[171.8672, 173.75
15] 

NEGIR [81.0586, 82.0396] [168.1172, 170.0792] [169.0403, 171.0023] [172.3208, 174.2828] [169.462, 171.424] 

NLGamIR 
[78.11411, 78.8487
7] [162.2282, 163.6975] [163.1513, 164.6206] [166.4318, 167.9011] 

[163.573, 165.042
3] 

NBeIR 
[82.04871, 82.9977
7] [170.0974, 171.9955] [171.0205, 172.9186] [174.301, 176.1991] 

[171.4422, 173.34
03] 

NIR [83.11783, 83.9568] [168.2357, 169.9136] [168.3785, 170.0565] [169.6369, 171.3148] 
[168.6839, 170.36
18] 

 

Table 5. value of the statistical measures 

Dist. W A K-S p-value 

NGIR [0.0268702, 0.02770035] [0.1855461, 0.1890523] [0.08034257,0.08649474]  [0.9639576, 0.9816981] 

NOLIR [0.2297134, 0.2534004] [1.445338, 1.567715] [0.1907744, 0.1914555] [0.1945301, 0.1977047] 

NKuIR [0.1927844, 0.2104938] [1.237822,, 1.326984] [0.1917165 , 0.1928729  ] [0.1880491, 0.1933235] 

NEGIR [0.1466052, 0.1657331] [0.9725824, 1.070791] [0.1546121, 0.1587126] [0.3950125, 0.4270969] 

NLGam
IR [9.713265, 9.742436]  [59.80061, 59.85859] [0.9933995, 0.9937315] 

[1.221245e-15,1.221245e-
15] 

NBeIR [0.1857669, 0.2037795] [1.197997, 1.288988] [0.1837796, 0.1851674] [0.2253741, 0.2326529] 

NIR [0.1875187, 0.2053168] [1.208044, 1.297796] [0.2179057, 0.2181093] [0.0985182,0.09906559] 
 

Table 6. Estimator value interval for parameters by MLE 

Dist. 𝒂̂𝑵 𝒃̂𝑵 𝒄̂𝑵 

NGIR [0.063694659, 0.060528236] [0.006384761, 0.006563764] [2.5641639722.898459181] 

NOLIR [26.420065, 46.810342] [17.567029, 29.835744] [5.055747, 5.739065] 

NKuIR [3.0874136, 3.2610057] [0.7395029, 0.7521805] [3.0874136, 3.2610057] 

NEGIR [0.7640630, 0.7703582] [21.6626007, 25.8950075] [0.1959427, 0.2768060] 

NLGamIR [29.83443932, 35.20388063] [4.23819280, 4.65152195] [0.01511706, 0.02365754] 

NBeIR [5.9071571, 7.9709860] [0.7335148, 0.7445871] [1.1073351, 1.6785324] 

NIR ------- -------- [11.84369, 13.04873] 

 

 
Figure 6. Empirical Fitted NGIR NCDFs with data set 

 
Figure 7. NGIR with Histogram Dutch COVID-19 Mortality Data 
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Table 4: The NGIR distribution demonstrated superior performance across the evaluated criteria, consistently 
yielding the lowest values among all compared models. This suggests it provides the most accurate representation 
of the data. For instance, its AIC values ranged between [158.7706, 159.9583], significantly lower than those of 
alternatives like the NOLIR distribution, which ranged from [172.9734 to 175.2927]. These results highlight the 
NGIR model's strength in minimizing information loss. 

Table 5: Further validation of the NGIR distribution’s effectiveness is found in its performance on goodness-
of-fit tests. It achieved the lowest W and A statistics (e.g., W values within [0.0268702, 0.02770035]) along with th 
highest p-values (ranging from [0.9639576 to 0.9816981]), outperforming other models that showed weaker fits to 
the data. 

Table 6: This table summarizes the parameter estimates obtained through the maximum likelihood estimation 
(MLE) method. For the NGIR model, parameter values were estimated with high precision, indicating the model’s 
strong capacity to account for variability and uncertainty within the dataset. 

Figure 6 compares the empirical cumulative distribution function (ECDF) of the observed data with the 
theoretical NCDF of the NGIR model. The close alignment between the two curves suggests a strong agreement, 
reinforcing the model’s suitability for this dataset. 

Figure 7 displays the data histogram overlaid with the NGIR probability density function. The alignment 
between the empirical and theoretical distributions further confirms the model’s capability in capturing the 
characteristics of the COVID-19 mortality data. 

CONCLUSION  

The study results confirm that the NGIR provides an effective framework for modeling data with high degrees 
of uncertainty, such as COVID-19 mortality data. By analyzing the attached tables and figures, it is clear that the 
NGIR outperformed other distributions in terms of information criteria and goodness of fit, recording the lowest 
AIC and BIC values and the highest p-values. This indicates that the model is able to better capture the variance 

and uncertainty in the data . 
Also, Monte Carlo simulations showed that the Maximum Likelihood (MLE) method was the most accurate 

in estimating the NGIR parameters compared to other methods such as the LSE and WLSE. A practical 
application on Dutch data confirmed the model's suitability, as its strength lies in its ability to handle parameter 

intervals, making it suitable for data with an ambiguous nature. 
In addition, the graphs showing the convergence of the theoretical curves with the actual data support the 

hypothesis that the NGIR provides an accurate representation of reality. These results open new avenues for the 
use of neutrosophic models in the analysis of epidemiological data and other areas characterized by uncertainty. 
Finally, the study recommends the use of NGIR as a fundamental tool in the statistical modeling of complex data, 
emphasizing the importance of choosing appropriate estimation methods such as MLE to ensure the accuracy of 
results. It also proposes future research to explore the model's applications in other fields and expand its scope to 
include additional types of uncertain data. 

Funding Statement: This work was supported and funded by the Deanship of Scientific Research at Imam 
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2501). 
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