

How Academic Climate Shapes Mentorship and Enhances Lecturer Career Development

Pratikto Trinando^{1*}, Ratna Komala Putri²

¹ Management, Economic Business, Telkom University, Bandung, Indonesia; pratikto@student.telkomuniversity.ac.id

² Management, Economic Business, Telkom University, Bandung, Indonesia; ratnakomalaputri@telkomuniversity.ac.id; <https://orcid.org/0000-0003-2910-8472>

*Corresponding Author: pratikto@student.telkomuniversity.ac.id

Citation: Trinando, P. & Putri, R. K. (2025). How Academic Climate Shapes Mentorship and Enhances Lecturer Career Development, *Journal of Cultural Analysis and Social Change*, 10(4), 2298-2317. <https://doi.org/10.64753/jcasc.v10i4.3194>

Published: December 12, 2025

ABSTRACT

In this article we investigate how the academic climate and the research culture influence the career development of lecturers by embedding mentoring as a key developmental process in higher education. This paper contributes to the sparse literature on the interaction between institutional contexts and professional development by developing an integrated model of how relational (baselining from environments) and structural factors (features of academic activities that vary in degree to which they are individualized) intersect in the shaping lives of academics. The results demonstrate the direct role played by conducive academic atmospheres and robust research environments in facilitating career trajectories; they also work through mentorship, which may reinforce developmental support, professional growth and involvement in scholarly work. The study provides a new understanding of the role mentorship plays as a main conduit that institutional conditions are channeled through to affect individual academic advancement, providing further evidence regarding the strategic importance of merging support at an institutional level with personal development as practices. These findings enhance our understanding of academic human resource development and have implications for how universities can promote more productive, research-intensive and mentorship-based academic communities.

Keywords: Academic Culture; Research Environment; Mentorship; Career Advancement; Academia.

INTRODUCTION

Higher education is a driving force behind the national agenda for long-term development, especially in the Golden Indonesia 2045 vision and future of globally competitive human resources (Mulyoto, 2019). A University are then challenged to run the Tri Dharma teaching, research and community service that is highly determined by the competency and performance of lecturers (Suwignyo, 2024). As human resources are known as professional educators and scientists (Undang - Undang No. 14 Tahun 2005), lecturer are considered a strategic national assets with academic quality that greatly affects the competence of graduates, research results, and national innovation capacity (Suwignyo, 2024). For that reason, career development on the promotion of academic functional route within those structures become the important investment to improve institutional excellence and quality of Tri Dharma implementation (Ilyas & Semiawan, 2012; Suherlan, 2017).

Despite its strategic importance, there is a persistent structural anomaly in the way that faculty careers are developed in Indonesia. This is frequently described as a career bottleneck. This issue is particularly evident in the transition towards the ranks of Associate Professor and Full Professor (Michalak & Ellixson, 2025; Solga et al., 2025). The distribution of faculty members is uneven, as evidenced by national data from Kemendikti

(2021–2023). This is evident in the substantial gap between Lecturer (115,702 individuals) and Associate Professor (33,352 individuals) in 2023, with more than 86% of faculty members concentrated in the lower ranks. While Indonesia is one of the most productive countries in Southeast Asia in terms of publication volume (447,794 documents), the average citation rate is low at only seven citations per document. This raises concerns about research quality and visibility, as well as the limited contribution to accelerating faculty promotion (Carter-Sowell et al., 2019; Dobelev & Rundle-Theile, 2015; Van Miegroet et al., 2019).

The findings of the survey, which revealed that 83.75% of respondents viewed the management of the institute as adequate and 81.88% viewed the policy support as adequate, are at odds with the low number of respondents who reported a profitable response to the question, "Academic Environment and Organizational Culture". This is further supported by the fact that only 28.13% of respondents reported a profitable response. A lack of collegiality, coupled with an absence of scholarly communication and isolated research ecosystems, has been identified as a significant obstacle to academic productivity and promotion (Craig et al., 2025; Khalid et al., 2024; Ynalvez & Shrum, 2011). The findings reveal something that extends beyond the structural and policy levels: the cultural and environmental underpinnings that are crucial for supporting academic growth are not adequately reinforced (Chanda et al., 2025; Felix & Hennekam, 2025).

To address this issue, the current paper focuses on three contextual factors that are increasingly recognized as being crucial to academic success: Research Culture, Academic Climate, and Mentorship. Research culture encompasses the values and norms that influence scientific productivity through their impact on practices, behavior and structures (Brooker & Allum, 2024; Hurley, 1995). It is recognized that an excellent research environment is one of the most important contributors to publication quality and career progression. Academic climate refers to the relational and intellectual environment that fosters collegiality and scholarly engagement (Al-Kurdi et al., 2020; Romel et al., 2021) and has been found to prematurely affect research productivity and faculty motivation (Desselle, Andrews, et al., 2018; Owan et al., 2024). The idea of mentoring is to help senior and junior faculty work together to improve research productivity, make adjustments and help shape academic careers (Bell et al., 2024; Miller et al., 2024; Williams et al., 2023). New findings suggest that the effect of research culture and academic climate is influenced by mentorship. That is to say, mentors help convert institutional resources into personal professional skills (Çalıkoğlu et al., 2025; Chan et al., 2024).

New researchers are still struggling to get started, and the pre-survey results are not very encouraging. For example, the ratings for Research Culture, Academic Climate, and collegial mentorship support received were between 29–28%. So it is very important to look at these influences more closely. Based on interviews, institutional mentoring program were commonly perceived as 'not functioning as desired', which indicates a significant discrepancy between policy and practice. Empirical support for this problem comes from international research, with global studies demonstrating that academic promotion can be fast-tracked based on who you know (Abramo et al., 2021; Abramo, D'Angelo, & Reale, 2019). To ensure fair and sustainable academic human resources planning, it is vital to grasp how these contextual factors interact particularly how mentorship can serve as a unifying force within an otherwise lacking academic environment.

The purpose of the current study is to explore why Faculty Career Development occurs, by examining the state of Research Culture, Academic Climate, and Mentorship and how these contextual factors help develop faculty along an academic career trajectory. Special emphasis is placed on the Mediating effect of Mentorship, which is proposed to operate as an intermediary process transferring the influence of Research Culture and Academic Climate to observable career advancement. By synthesizing this array of factors into one analytic model, the article provides conceptual consistency about how institutional culture, scholarly settings, and social support networks together cultivate scholarly productivity and career attitudes. The results should improve theoretical conversations in HRM (Human Resource Management) literature and Higher Education scholarship as well as offer pragmatic advice for faculty who desire to fast-forward their academic careers, and inform university administrators seeking evidence-based strategies on how best to support research ecosystems, create positive academic climates and design structured mentorship programs that undergird sustained faculty development.

THEORIES AND HYPOTHESES

Supporting Theory

Lecturer career development: An integrated organizational behavior and human resource management perspective According to (Owan et al., 2024) and (Niso et al., 2022), there are constructs such as institutional culture, work climate, mentoring systems that cumulatively drive academic performance and promotion opportunities on the job. A research culture is the social conventions, customs of conduct or norms that determine how scholarship is created and appreciated; departments with strong research cultures with an operationally defined chain of co-operating within networks exhibit significantly higher rates of publication productivity and

subsequent career key progression (Abramo et al., 2021; C. J. Bland et al., 2005; Brooker & Allum, 2024). Academic climate encompasses lecturers' perceptions of communication, resources and administrative support; factors that are known to impact motivation, engagement and research outputs (Al-Kurdi et al., 2020; Desselle, Raja, et al., 2018). In these instances, mentoring function as career and psychological support that transforms institutional opportunities into individual competence and advancement ((Day & Allen, 2004; Miller et al., 2024).

Research Culture and Lecturer Career Development

Strong research culture is generally viewed as one of the cornerstones for lecturer development in their careers, given that it is interlinked with academics' promotion based on research productivity, publication quality and contribution to scientific advancement (Abramo et al., 2021; Brooker & Allum, 2024). Institutions with strong research norms (including integrity, working together and staying involved) produce lecturers with high scientific output and visibility ((C. J. Bland et al., 2005; Chung et al., 2017; Shin, 2011). Supporting mechanisms such as clear research focus, funding support, and normal academic interaction also have a positive influence on individuals' motivation and ability for meaningful research work (Åkerlind, 2008; Shin, 2011). This type of environment allows lecturers to build the expertise, networks and publication histories needed for career advancement, thus linking institutional culture with personal academic development.

H1. Research Culture will be positively associated with Lecturer Career Development.

Academic Climate and Lecturer Career Development

A supportive academic environment is considered one of the main factors that determine lecturer performance and long-term career development since institutional communication styles, supervision quality and resource availability significantly impact scholarly involvement. There is evidence that positive academic environments characterized by collegial, constructive supervision and efficiency in administration - may increase research motivation, collaboration and overall academic productivity (Al-Kurdi et al., 2020; Desselle, Raja, et al., 2018). Lecturers are more likely to involve in innovative research activities and maintain a higher level of academic motivation at work when their organizational climate is perceived as open and supporting (Huttunen et al., 2024; Romel et al., 2021; Salmela-Aro & Upadyaya, 2018). These climates also reduce psychological obstacles and enhance team work, and support is provided through available resources and institutional responsiveness to research efforts (Peterson & White, 1992; Shin, 2011). Therefore, chapter lecturers in collaborative academic climates would have higher research and clearer career advancement.

H2. Academic Climate will be positively associated with Lecturer Career Development.

Mentorship and Career Advancement

Mentoring is highly recognized as an essential mechanism for advancing lecturers' academic careers in the sense that it offers instrumental assistance, psychosocial support and developmental feedback that are indispensable for a lecturer's career in order to cope with the ambiguities of academic work. Empirical research indicates that mentors make strong contributions to protégés' career competencies via the provision of specific skill development, access to professional information and structured career support (Allen & Eby, 2008; Chao, 1997; Day & Allen, 2004). Mentorship also promotes emotional well-being and academic confidence, as they provide for affirmations, healthy dialogues and a secure relational place to share concerns (Allen et al., 2010; Keller, 2007). Role modelling provides additional support for professional identity formation, as mentors model ethical behavior, scholarly rigor and effective work habits that junior faculty can aspire to (Ragins & McFarlin, 1990; Rauvola et al., 2019; Rudolph et al., 2018; Seehusen et al., 2021). Recent evidence also points to mentorship as a key transformative element in increasing research productivity and readiness to publish - most notably in resource-limited environments (Miller et al., 2024; Owan et al., 2024; Pissardini et al., 2025; Williams et al., 2023). Taken together, these results demonstrate that mentorship is a critical institutional determinant of academic productivity and professional growth, and in doing so supports scholarly outcomes, builds the capacity to be successful in academia learning self-efficacy and enhances promotion readiness.

H3. Mentorship will be positively associated with Lecturer Career Development.

Research Culture as an Antecedent of Mentorship

A strong research environment is a critical precursor of effective mentorship; such an environment fosters collaboration, scholarly engagement and shared research ethos, which in itself facilitates mentorship encounters. Research Intensive universities and those that have a high regard for research integrity, intellectual freedom and the collaborative nature of inquiry are likely to cultivate deeply embedded norms which promote senior academics taking on the responsibility to mentor junior colleagues through shared research activities, manuscript writing/updating and scientific problem solving (Åkerlind, 2008; Brooker & Allum, 2024). In these atmospheres, mentoring is not simply a formal requirement but an entrenched scholarly activity that has become part of the

normative culture as driven by institutional mandates for ongoing research output and the exchange of ideas among colleagues (C. J. Bland et al., 2005; Bozeman & Gaughan, 2011). Leadership-based support for research resources, funding and an institutional vision also increases the chances that senior researchers will value mentoring relationships, as ecosystems with strong resources and a bent toward innovation are conducive to rapid knowledge generation and inter-generational learning (Abramo et al., 2009; Shin, 2011, 2012). A strong research culture, therefore, not only contributes to the production of science and scholarship but also is a powerful driver for formal and informal mentorship, and is an important enabler that can impact upon quality of mentoring within higher education.

H4. There will be a positive relationship between Research Culture and Mentorship.

Academic Climate and Mentorship

A supportive academic culture is generally considered to be an important influence on good mentoring, as it creates and maintains the inter-relational context needed for faculty members to share knowledge, participate in scholarly discourse and develop collegial trust. In supportive work environments that depend on good supervision, positive communication, and efficient administrative systems, institutional barriers to mentoring tend to be diminished and the relations develop more naturally (Deem, 2004; Peterson & White, 1992). By creating collegiality, collaboration and scholarly team-based engagement in academic units, they help underpin the social infrastructure relationships that mentor and mentee require to organize their research activities and negotiate their roles as academics (Al-Kurdi et al., 2020; Romel et al., 2021). Furthermore, climates with the availability of resources and supportive leadership foster psychological safety that makes more senior academics to invest their time into developmental and psychosocial mentoring as well as junior faculties to actively seek for guidance from them (Desselle, Raja, et al., 2018; Huttunen et al., 2024). Therefore, a constructive academic climate not only contributes to scholarly productivity but also facilitates the establishment of effective mentoring relationships as it offers both relational and structural conditions that are required to be in place for long-term academic support.

H5. Academic climate has been found to be negatively correlated with mentorship.

Mentorship as a Mediator Between Research Culture and Career Development

Mentoring is a central vehicle for translating the values, norms and expectations of research culture into concrete career outcomes. In settings with institutionalized research agendas, mentors are the custodians of culture and work to orient junior staff members to scholarly norms, negotiate publication expectations, and cultivate academic expertise required for career advancement (Åkerlind, 2008; Kailu et al., 2025). Mentoring provides the means, through developmental, psychosocial and model role functions, for lecturer replicability of organizational research expectations as productive behavior develops the bridge from a culture of research to career success (Chen et al., 2025; Li et al., 2025; Rath et al., 2025).

H6. Mentorship will mediate the relationship between Research Culture and Lecturer Career Development.

Mentorship as a Mediator Between Academic Climate and Career Development

A mentorship's potential to support lecturers' professional development effective works best under good academic environment for as long as those conditions are maintained. Workplaces in which there are good communication, collegiality and sufficient admin support and research infrastructure enhance mentors' ability to navigate junior academics through the institutional expectations and scholarly pressures (Al-Kurdi et al., 2020; Desselle, Raja, et al., 2018). In such climates, mentors guide protégés in obtaining resources, handling the academic load and developing good research practices with the result of turning organisational support as it is experienced into actual developmental outcomes (Seehusen et al., 2021; Williams et al., 2023). Mentorship, then, becomes a key conduit through which positive academic climates feed into career success over the long term.

H7. The effect of Academic Climate -Lecturer Career Development will be mediated by mentorship.

METHODS

Research Design

The study methodology incorporates a blend of quantitative, descriptive and causal survey research design. The quantitative approach is also used to test hypotheses and can perform statistical tests related to the relationship/strengthening among research culture, academic climate, mentorship and lecturer career development (Sugiyono, 2019; Sujarwani, 2021). The descriptive component is employed to accurately reflect the status of the research-related variables, while the causal component is used to examine the direction and size of occurrence among constructs. This includes the examination of how Research Culture and Academic Climate influence

Lecturer Career Development Murtono (2025), with Mentorship being located as an intervening link (Hindarsah et al., 2025; Miller et al., 2024; Rath et al., 2025).

The study is of a cross-sectional nature, which means that data are gathered at a single point in time from participants (Setiawati et al., 2024). This method is appropriate for non-experimental studies, where the perception and attitudes of research participants can be captured without manipulating the research site (Prayitno et al., 2025). The school teacher is the unit of analysis for the present study. The paper employs Path Analysis on SEM-PLS to investigate the structural relationships between variables. The SEM-PLS is a suitable choice in situations involving complex theoretical models, small to medium sample sizes and predictive relations between latent constructs (Sarstedt et al., 2022).

Respondent Characteristics and Sampling Profile

For a more specific summary of the 184 lecturers involved in this study, refer to the demographic description in **Appendix Data A.1**. The gender breakdown of the sample includes a majority of female respondents (53.8%). Lower (early career) academic ranks have been found to be highly concentrated in terms of their distribution. Specifically, the ranks of Tenaga Pengajar (65.22%), Expert Assistant (14.67%) and Lector (15.76%) have been identified as being most prevalent. Only a few have the stature of either a Head Lecturer (3.26%) or a Professor (1.09%), which supports the observation that the sample is largely drawn from lecturers who are early in their academic careers. This profile is essential for understanding areas such as research culture, academic climate, mentorship and career development, which may act differently across career stages.

Institutional affiliation and geographical distribution also highlight a strong structural pattern in the sample. Most respondents are from private universities (75.54%), with public universities making up the remaining 24.46%, meaning that private higher education is most represented. Geographically, respondents are mainly from major academic city centres: DKI Jakarta (37.5%), West Java (15.22%), and East Java (12.5%). Lecturers from other provinces also contribute to geographic diversity, but they form a small proportion of the sample. However, the demographic profile set out in Appendix Data A.1 shows that early-career lecturers at private universities in high-density educational areas are a key factor that must be considered when interpreting the study's results.

Data Collection

The survey was the main instrument for primary data collection and it was gathered from all the 184 lecturers that formed part of the sample. The instrument used in this study is a questionnaire based method which efficient for obtaining information from dispersed population and the ease with which perceptions, attitudes, experiences could be measured (Murtono & Prayitno, 2025; Syahrudin & Suryani, 2025). Our sample consisted of voluntary participants, such that the data reported in this study represented self-assessment responses to a set of scheduled training activities (Research Culture, Academic Climate, Mentorship and Career Development) for each respondent at their institution.

Variable Classification and Measurement Scale

The operationalization of the built-form variable is used to underpin development of the questionnaire instrument. All constructs are operationalized using a 5-point Likert scale which is developed to measure the levels of agreement or disagreement of respondents against the indicators. The Likert scale has been known to enhance the accuracy of attitude assessment and decrease response neutrality potentially increasing data quality (Anam, 2024; Arifah & Rizki Nugraha, 2024). The operational definitions, dimensions, indicators and measurement scales of the variables analyzed are shown in Appendix data A2.

RESULT FINDING

Measurement Model Evaluation (Outer Model)

As demonstrated in Table 1, all the measurement items have high levels of outer loading and demonstrate strong convergent validity. All indicators in the Academic Climate (AC) load between 0.834 and 0.876, which is higher than the suggested threshold of 0.70. This indicates that all items adequately represent their corresponding construct. Similarly, the loadings of the LCD indicators are also high, ranging from 0.892 to 0.925, suggesting a robust measurement model. Mentorship (MT) is also characterized by strong indicator performance, with loadings ranging from 0.855 to 0.890, suggesting a high degree of reliability and construct validity. In a similar way, all of the RC (Research Culture) indicators show a strong correlation between 0.856 and 0.899, which is a good sign for the strength of the measurement model. Overall, these findings suggest that the model has acceptable convergent validity and that the indicators are reliable and relevant for testing subsequent structural models.

Table 1. Outer Loadings and Convergent Validity Results

Outer loadings	(AC)	(LCD)	(MT)	(RC)
AC1	0.872			
AC2	0.849			
AC3	0.834			
AC4	0.865			
AC5	0.859			
AC6	0.876			
AC7	0.874			
LCD1		0.892		
LCD2		0.917		
LCD3		0.925		
LCD4		0.898		
LCD5		0.919		
LCD6		0.912		
MT1			0.877	
MT2			0.890	
MT3			0.856	
MT4			0.864	
MT5			0.855	
MT6			0.862	
RC1				0.856
RC10				0.873
RC2				0.859
RC3				0.893
RC4				0.899
RC5				0.869
RC6				0.899
RC7				0.882
RC8				0.884
RC9				0.884

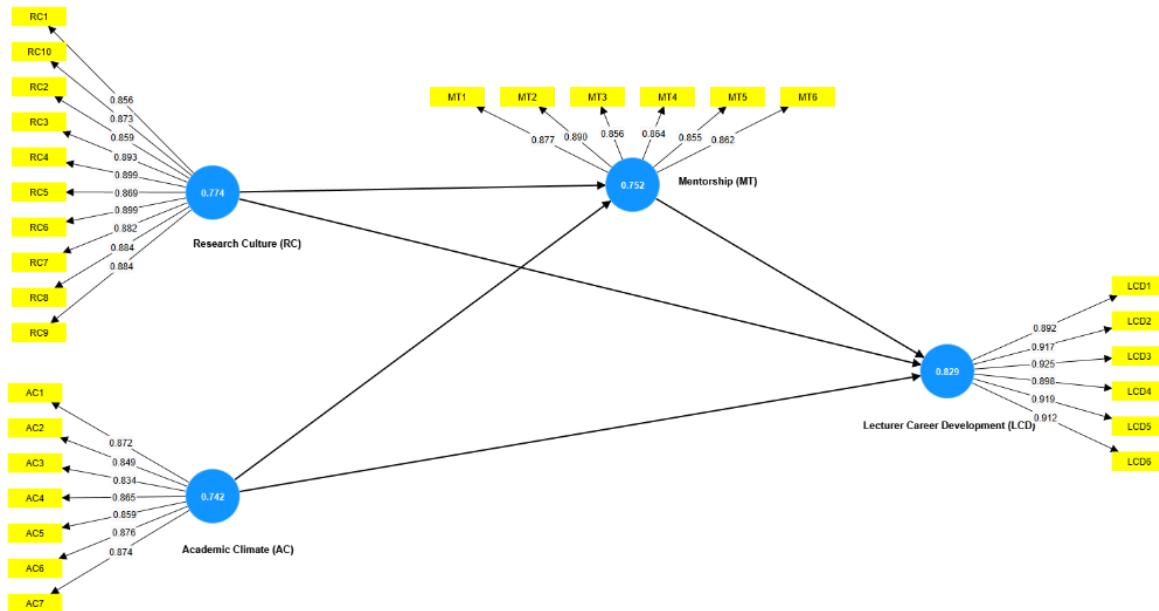
As shown in Table 2, by providing the indicators of construct reliability, it can be inferred from all latent variables that they all reach or exceed the thresholds for acceptable level of internal consistency. Specifically, ranges of Cronbach's Alpha values (0.934 to 0.968) and Composite Reliability (ρ_c) coefficients (0.948 to 0.972) are well above the minimum acceptable threshold scale value of 0.70, pointing towards high levels of measurement scales' reliability. The Average Variance Extracted (AVE) of all constructs is also satisfactory, with values between 0.742 and 0.829, which are greater than the cut-off value of 0.50, indicating that each construct accounts for a considerable amount of variance in its indicators. Taken together, these results indicate that the constructs Academic Climate (A), Lecturer Career Development (B), Mentorship (C) and Research Culture demonstrate strong reliability and convergent validity such that it is reliable to evaluate the measurement model in terms of structural model assessment.

Table 2. Construct Reliability (Cronbach's Alpha and Composite Reliability)

Construct reliability and validity	Cronbach's alpha	(rho_a)	(rho_c)	(AVE)
Academic Climate (AC)	0.942	0.944	0.953	0.742
Lecturer Career Development (LCD)	0.959	0.959	0.967	0.829
Mentorship (MT)	0.934	0.935	0.948	0.752
Research Culture (RC)	0.968	0.968	0.972	0.774

The discriminant validity test in Table 3 shows all the constructs in the model meet the Fornell-Larcker criterion. The were presented on the diagonal, and the square root of each construct's AVE listed after comments represent average variance extracted of that construct) is higher than most correlations between constructs (hair et al. 2016), indicating that each latent variable shares more variance with measures in its own scale than it does with measures from other scales. Academic Climate (AC) shows a high AVE value (0.861), higher than its correlations with Lecturer Career Development (LCD = 0.521), Mentorship MT = 0.556, and Research Culture RC = 0.055). Also, LCD indicates a diagonal value of 0.910 higher than those of its relationships with AC, MT and RC. Mentorship (MT) also shows good discriminant validity, by the square root of its AVE (0.867), being greater than the correlation with all other constructs. Research Culture (RC), 0.880 on the diagonal, also surpasses

its inter-construct correlations. The evidence from these tests support the empirical distinctness of each construct and its measurement of a separate conceptual domain, thus further confirming their discriminant validity.


Table 3. Discriminant Validity (Fornell–Larcker Criterion)

FLc	(AC)	(LCD)	(MT)	(RC)
Academic Climate (AC)	0.861			
Lecturer Career Development (LCD)	0.521	0.910		
Mentorship (MT)	0.556	0.743	0.867	
Research Culture (RC)	0.055	0.546	0.638	0.880

The HTMT ratio results in Table 4 lend further support to the strong discriminant validity between all constructs. Each HTMT value is below the conservative 0.85 and liberal 0.90 thresholds, implying that there are no severely problematic overlapping constructs. More specifically, the HTMT values for the associations of AC with LCD (=0.545), MT (= 0.591) and RC (= 0.075) are significantly well below these cut-off levels, providing evidence of discriminant validity. Similarly, acceptable HTMT scores are also obtained for the relationships among Mentorship such as with MT–LCD (0.784) and MT–RC (0.671), well below than the recommended threshold. Discriminant validity is also supported by the HTMT ratio for Research Culture and Lecturer Career Development (0.565) indicating that these constructs are empirically distinct from one another. Taken together, the results in relation to HTMT provide further support for the measurement model by showing that all constructs are well measured and not overloaded with collinearity among latent variables.

Table 4. Discriminant Validity (HTMT Ratio)

Construct	HTMT
Lecturer Career Development (LCD) <-> Academic Climate (AC)	0.545
Mentorship (MT) <-> Academic Climate (AC)	0.591
Mentorship (MT) <-> Lecturer Career Development (LCD)	0.784
Research Culture (RC) <-> Academic Climate (AC)	0.075
Research Culture (RC) <-> Lecturer Career Development (LCD)	0.565
Research Culture (RC) <-> Mentorship (MT)	0.671

Figure 1. Measurement Model (Outer Model)

Structural Model Evaluation (Inner Model)

The collinearity analysis (Table 5) reveal that each Variance Inflation Factor (VIF) is way below the generally recommended cut-off value of 5.00, and even comply with a more conservative zero tolerance threshold of 3.00 in most paths, thereby indicating no multicollinearity concerns among constructs in the structural model. The degrees of collinearity are especially small for the effects of AC and MT (VIF = 1.003), indicating little problem with multicollinearity, thus suggesting that each factor makes a unique contribution to MT. While VIFs of the paths to LCD (i.e., for AC → LCD = 1.858; RC → LCD=2.165 and MT → LCD=3.126) tend to be higher, these are still

significantly short of leaving much cause for concern that problematic redundancy exists among these predictors. In general, the VIF value results indicate that there are evidence of stability in the structural model whereby none of the estimated path coefficients is inflated by multicollinearity among predictor constructs.

Table 5. Collinearity (VIF Values)

Construct	VIF
Academic Climate (AC) -> Lecturer Career Development (LCD)	1.858
Academic Climate (AC) -> Mentorship (MT)	1.003
Mentorship (MT) -> Lecturer Career Development (LCD)	3.126
Research Culture (RC) -> Lecturer Career Development (LCD)	2.165
Research Culture (RC) -> Mentorship (MT)	1.003

The evidence in Table 6 indicates that the structural model has a high degree of explanatory and predictive ability. The R² value for LCD is 0.599, which means that Academic Climate, Research Culture, and Mentorship variables together explain 59.9% of the variance in LCD (moderate tolerance). Mentorship further has a high R² of 0.680, demonstrating that Academic Climate and Research Culture in combination explain positive correlation (68%) to it. The Q² redundancy as of the endogenous constructs are higher than zero (LCD = 0.491; MT = 0.506), indicating significant predictive relevance according to blindfolding procedure. The Q² values of communality of the constructs are higher than 0.60; which allows for accepting strong predictive relevance at indicator-level. Exogenous constructs such as AC and RC naturally do not possess any R² values, however by showing high Q² comm (0.652 and 0.717) support the reliability of their measures. Taken together, these results suggest that the structural model is both of high explanatory and predictive power (confirming interpretable linkages).

Table 6. Coefficient of Determination (R²) and Predictive Relevance (Q²)

Construct	R ²	R ² Adjusted	Q ² Redundancy	Q ² Communality
Lecturer Career Development (LCD)	0.599	0.593	0.491	0.752
Mentorship (MT)	0.68	0.677	0.506	0.647
Academic Climate (AC)	—	—	0	0.652
Research Culture (RC)	—	—	0	0.717

The results of the effect size analysis are shown in Table 7. These results show the importance of each structural path in the model. The importance is shown on a scale of different levels. AC has a small effect on LCD ($f^2 = 0.096$) and a large effect on MT ($f^2 = 0.852$), suggesting that AC is a significant factor in shaping mentorship dynamics within academic settings. LCD is affected by MT to a medium extent ($f^2 = 0.148$), illustrating the considerable impact it has on lecturers' professional development. Research Culture (RC): The RC's effect on LCD is small ($f^2 = 0.076$) for both MT and AC, but large for MT ($f^2 = 1.159$), making it the greatest predictor of mentorship quality and engagement. The evidence suggests that, while both AC and RC are strong forces for mentorship, MT is a useful way to turn some of this contextually focused strength into better career advancement.

Table 7. Effect Size (f^2) for Structural Relationships

Path	f^2	Interpretation
Academic Climate (AC) → Lecturer Career Development (LCD)	0.096	Small
Academic Climate (AC) → Mentorship (MT)	0.852	Large
Mentorship (MT) → Lecturer Career Development (LCD)	0.148	Medium
Research Culture (RC) → Lecturer Career Development (LCD)	0.076	Small
Research Culture (RC) → Mentorship (MT)	1.159	Large

The findings of Table 8 reveal that all hypothesis paths in the structural model are statistically significant and positive. Academic Climate has a significant direct impact on Lecturer Career Development, the weight is large enough and there is great statistical support for it, indicating that the supportiveness of academic environment directly effects lecturers' professional development. The effect of Academic Climate upon Mentorship is also strong and very significant, suggesting that supportive academic environments improve the quality and amount of mentorship. This, in turn, demonstrates mentorship to have a strong positive effect on Lecturer Career Development and its centrality as the developmental vehicle that raises lecturer's career development. Research Culture (which continued to hold a significant relationship directly with Lecturer Career Development) also emerges as having highly positive effects on Mentorship, suggesting that institutions that engage in strong research norms and support are associated with both better mentoring relationships and career development outcomes.

These findings cumulatively emphasise the intertwined relationship between academic climate, a research culture and mentorship as driving forces to support lecturers in advancing their careers.

Table 8. Hypothesis Testing Results (Path Coefficients, t-values, p-values)

Path	Original sample (β)	t-statistic	p-value	95% CI
Academic Climate (AC) → Lecturer Career Development (LCD)	0.267	3.95	0.000	(0.132, 0.395)
Academic Climate (AC) → Mentorship (MT)	0.523	12.197	0.000	(0.436, 0.605)
Mentorship (MT) → Lecturer Career Development (LCD)	0.431	4.785	0.000	(0.255, 0.613)
Research Culture (RC) → Lecturer Career Development (LCD)	0.256	3.412	0.001	(0.110, 0.401)
Research Culture (RC) → Mentorship (MT)	0.610	14.816	0.000	(0.528, 0.687)

The structural model extracted by PLS-SEM is presented in Figure 2, showing the directional relations between Research Culture (RC), Academic Climate (AC), Mentorship (MT) and Lecturer Career Development (LCD). RC and AC both have strong positive pathways to MT, as well as significant direct effects on LCD. The model's mediating role is supported by mentorship, which also has a significant positive impact on LCD. The figure presents the standardized path coefficients. It also presents the levels of significance. And it presents the explained variance (R^2). The R^2 for MT is 0.680. The R^2 for LCD is 0.599. These figures show that independent or joint RC-AC constructs explain much about mentoring outcomes. They also explain much about lecturers' career advancement. The model shows that a logical and well-thought-out set of causes exists, with an encouraging academic setting (in terms of the quality of advice they received from their mentors, as well as a strong research culture) having a positive effect on the quality of mentorship and on the development of careers for those who teach.

Figure 2. Structural Model (Inner Model)

Mediation Analysis

As shown in Table 9, the mediation model was validated, and it was demonstrated that MT plays a significant mediating role between both AC and RC to LCD. The effect of AC on LCD via MT is positive and statistically significant ($\beta = 0.225$, $t = 4.445$, $p < 0.001$). The confidence interval does not include zero, which indicates robust mediation. Additionally, the indirect effect of RC on LCD via MT was significant ($\beta = 0.263$, $t = 4.415$, $p < 0.001$), as confirmed by the wide confidence interval. The promotion of lecturers' careers is associated with advancements in AC and RC, partially via mentoring, according to these findings. A supportive academic culture and an

established openness to research have a direct and indirect impact on career development. The former strengthens career development, while the latter strengthens it through positive mentoring practices.

Table 9. Mediation Effects of Mentorship on the Relationships Between Research Culture, Academic Climate, and Lecturer Career Development

Indirect Path	Indirect effect (β)	t-statistic	p-value	95% CI
Academic Climate (AC) → Mentorship (MT) → Lecturer Career Development (LCD)	0.225	4.445	0.000	(0.131, 0.329)
Research Culture (RC) → Mentorship (MT) → Lecturer Career Development (LCD)	0.263	4.415	0.000	(0.150, 0.384)

Importance–Performance Matrix Analysis (IPMA)

As shown in Table 10, according to our IPMA findings, Research Culture (RC) is of the highest importance while CPPD has the lowest impacts on Lecturer Career Development (LCD) (sum effects = 0.519 and 50.842 respectively), thus this RC as a relatively strong driver and relatively high performance value refers to that it is well-implemented with the sample universities. Academic Climate (AC) also has a high impact (importance = 0.493) but performs slightly lower with the performance score of 47.727, which implies that modulating highly significant factors as greater communication flow, administrative services support and more innovative ways of conducting research may increase gains in LCD size enormously. Mentorship (MT) exhibits moderate but slightly lesser importance (0.431) with reasonable performance (49.404), indicating that building mentoring plug a hole career advancement points could further increase promotion speed. At the indicator level, RC4 (institutional support and research vision), RC8—RC9 (collaborative and adaptable research process) and MT1—MT3 (developmental and psychosocial mentoring) have high performance means, as well as high contributions to LCD. Taken together, they indicate that emphasis should be given to improving the academic climate and quality of mentorship while maintaining a strong research culture for optimal return on efforts invested in lecturer career development.

Table 10. IPMA Results for Lecturer Career Development

Panel A. Construct-Level IPMA

Construct	Importance (Total Effect on LCD)	Performance
Academic Climate (AC)	0.493	47.727
Mentorship (MT)	0.431	49.404
Research Culture (RC)	0.519	50.842

Panel B. Indicator-Level IPMA

Indicator	Importance (Total Effect on LCD)	Performance (MV Performance)
Academic Climate (AC)		
AC1	0.083	47.962
AC2	0.079	45.652
AC3	0.07	48.641
AC4	0.082	49.728
AC5	0.081	46.739
AC6	0.09	48.37
AC7	0.086	47.011
Mentorship (MT)		
MT1	0.085	50.543
MT2	0.084	48.641
MT3	0.085	49.457
MT4	0.082	49.049
MT5	0.079	48.777
MT6	0.082	49.864
Research Culture (RC)		
RC1	0.06	49.592
RC10	0.058	51.087
RC2	0.056	50.543
RC3	0.06	50.543
RC4	0.061	52.446

RC5	0.055	50.815
RC6	0.06	49.728
RC7	0.059	51.087
RC8	0.059	51.902
RC9	0.062	50.679

Figure 3 displays two IPMA views: one for LCD, and another for MT which captures the relative importance of key predictive constructs in relation to performance. In the upper-right quadrant, Research Culture (RC) is revealed as of greatest concern (highest relative importance with ≈ 0.519) and excellent performance (≈ 50.8), suggesting that enhancing RC delivers the highest marginal return for improving LCD. Further, Academic Climate (AC) is ranked an overall greater than medium performance indicator (> 47.7) that remains a substantial predictor of GV (0.493), meaning that improvements in communication flow, supervisory quality and administrative support are strategically valuable. Mentorship (MT) has a moderate level of importance (≈ 0.431) and a relatively high score (≈ 49.4), suggesting that while it is contributing in some way to career the development process, its maximization is important still.

Second to the MT map, RC is again found to exert a comparably powerful effect (≈ 0.610) and shows correlated power ($> +.50$) which makes it an “anchor” for mentorship quality, that is a supportive research culture enables effective mentorship practices. Academic Climate (AC) also has a positive impact on mentorship, (≈ 0.523), but with relatively less efficiency, suggesting areas where institutions can choose to improve their culture. Together, the plots emphasize the importance of Research Culture as a highest-performing driver overall and that Academic Climate is an area of most potential successful impact for both mentoring quality and lecturer career advancement.

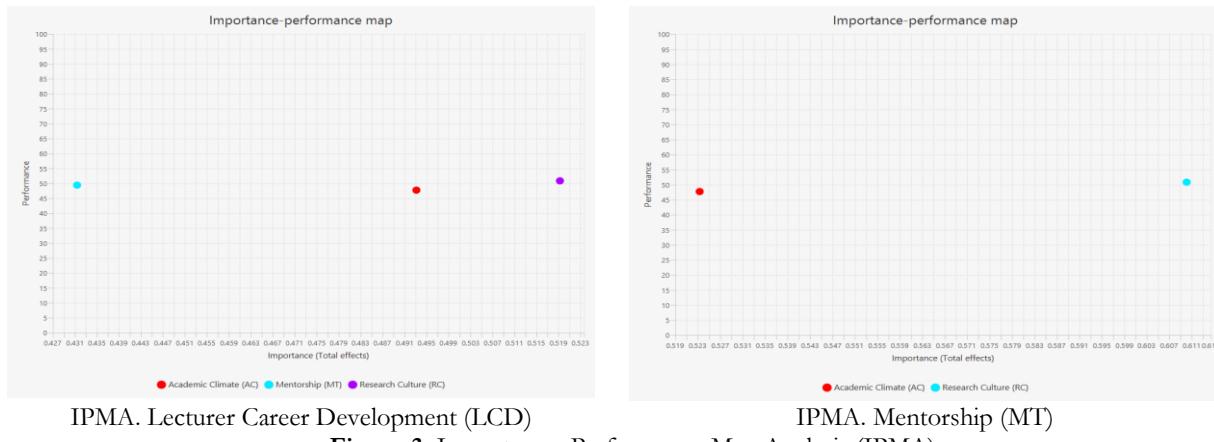


Figure 3. Importance-Performance Map Analysis (IPMA)

DISCUSSION

The results illustrate that lecturer career development is highly influenced by the institutional research culture and academic climate in which academics work. Institutions with explicit research values, strong commitment to leadership and support from funding structures, and regular scholarly activities provide an academic climate in which academics can produce enduring research outputs consistent with earlier reports that ensuring robust research ecosystems foster scholarly productivity and visibility (Brooker & Allum; Åkerlind; Abramo et al., 2018). The resource effect might further be amplified in this direction, when an academic climate supports collegial communication and resources are available and supervisory interactions are constructive as has been previously reported supportive organisational climates will increase faculty members' engagement, motivation and scholarly performance (Al-Kurdi et al., 2020; Desselle et al., 2018; Salmela-Aro & Upadyaya, 2018). Such enablers are all the more significant under Indonesia's promotion system in which NL support is significant and career advancement is contingent on an accumulation of research-based outputs.

As previously discussed, the mediating effect of mentorship is equally significant; It acts as an intermediate developmental step through which the institutional culture and climate are translated into concrete career outcomes. This finding is in line with mentoring theory which posits that developmental and psychosocial support provided by mentors facilitates the abilities of junior academics to understand rules concerning research expectations, the publishing process and institutional norms (Allen & Eby, 2008; Ragins & McFarlin, 1990). Empirical studies of mentoring have indicated that the aforementioned influences contributed to increased research persistence and sense of academic identity as well as enhanced satisfaction and career confidence (See

Williams et al., 2023; Seehusen et al, 2021). If anything, it would appear that mentorship serves not to replace but to magnify contextual benefits including supporting evidence that mentoring accelerates the conversion of institutional support into personal scholarly return.

The study also points that a strong research culture is an essential antecedent of the quality of mentorship. Organizations which respect independence, cooperation, and innovation generally create conditions that facilitate senior academics' participation in coproduction of supervision, co authorship, and scientific communication (Bozeman & Gaughan, 2011; Jung et al., 2017). These environments support informal and formal networks of mentorship, which allows assistant professors to acquire the skills necessary to have successful research careers. Comparatively, in contexts where research culture is fragmented or only nascent, lecturers faced difficulties shifting teaching and service obligations into research outputs for promotion, mirroring general fears about academic stasis in systems without coherent standards of academic inquiry (Ynalvez & Shrum 2011; Suwignyo 2024).

The IPMA findings are practically useful for prioritizing institutional enhancements. Vi Research Culture (Table 5) is high in both importance and performance, indicating that participating institutions have been starting to meaningfully invest in the research environment. The difference is in the Academic Climate which highlights significant performance gaps, suggesting that ways of enhancing communication systems, administrative efficacy and collaborative efforts must be identified to sustain the overall academic environment (Deem, 2004; Peterson & White, 1992). Mentoring despite performing reasonably well, represents a significant area for improvement with the introduction for example of formalized mentoring program, more consistent role-modelling and greater clarity in developmental pathways. As lecturers depend on interpersonal guidance to negotiate academic pressures, investment in mentorship quality could have devolved career returns for the sector (Passmore et al., 2012; Miller et al., 2024).

From a theoretical standpoint, these results further justify the study of faculty careers from an integrative perspective encompassing both organizational behavior and human resource management literatures as well as that within higher education research. The academic career is revealed to be located within both cultural, relational and structural aspects of the academic workplace, in line with views that careers are configured through organizational context rather than as individual affairs (Armstrong & Taylor, 2020; Robbins & Judge, 2023). Future studies can consider enhancing this model with other meso-level variables such as distribution of workload, performance appraisal systems and digital scholarship infrastructure, as well as applying longitudinal perspective to examine how change in culture and climate may influence career trajectory.

CONCLUSION

In this paper, we demonstrate the critical importance of institutional context such as research culture, academic climate and academic support for lecturer career development in Indonesian higher education. A supportive research culture characterised by robust scholarly norms, leadership support and collaboration structures underpins academic productivity, and an enabling academic climate facilitates involvement through resourcing, collegiality and constructive supervision. Mentoring is a key process that transfers these contextual strengths into career capital through development experiences, psychosocial support and socialisation into workroles. Collectively, these findings underscore the importance for universities to enhance their research ecosystems, develop healthy academic climates and establish formal mentoring programs that are necessary for sustainable and equitable faculty advancement.

IMPLICATIONS

This research carries a few implications for the practice of higher education administration. There is a need for universities to invest in research infrastructure, sharing systems and collaborative portals which strengthen an institutional culture that promotes scholarly output. Second, positive academic climate—where communication is clear, administrative processes are manageable and administrators are collegial—may create an environment where lecturers get the opportunity to succeed. Third, organized mentorship is imperative: formal mentor –mentee matching, mentor training and learning outcomes could improve research productivity and assist early-career academics towards promotion expectations. Together, this suite of interventions can serve to 13 address patented blockages in academic career progression.

LIMITATIONS

There are also some limitations to the present study despite providing in-depth and robust findings. However, causal inferences cannot be made due to the cross-sectional nature of design and observed associations may

change over time. Sample size is sizable but still heavily restricted to a few categories of institutional and geographic contexts, which may present a barrier to wider generalisability over the national higher education landscape. Self-reports could also lead to response bias, especially when assessing sensitive areas of research climate and mentorship. These could be limitations in interpreting the results.

FUTURE RESEARCH DIRECTIONS

Future research could build onto this work via longitudinal designs to assess the dynamism of research culture, academic climate and mentoring practices over career continuum. Further extension of the model to encompass meso-level factors like workload policies, digital scholarship support, or performance appraisal systems is crucial for a better understanding of the institutional level factors that influence career development. Comparative research across nations or institutional types would foster the embedding of findings in larger higher education systems. Lastly, investigations of digital or peer-mentoring interventions may also provide novel strategies to enhance career development paths in low-resource settings.

Author Contributions

Trinando developed the study, constructed the conceptual framework, supervised data collection and performed statistical analysis.

Ratna Komala Putri guided the methodological purification and validation of instruments, contributed to theoretical unification and critically reviewed the article.

The results were independently interpreted by both authors, and the manuscript was recast by the two authors with regard to intellectual content, approved for final submission, and each author agrees to be accountable for all aspects of the work.

Findings Summary

This investigation demonstrates that career progression for lecturing staff is greatly determinate of institutional research culture and academic climate, for which mentoring serves as a central process that mediates these environmental factors into personal success. Good research culture supports collaborative norms, knowledge translation and scholarly productivity; a positive academic climate supports enhanced communication, supervisory support and collegial engagement. Mentoring extends these institutional advantages by providing direction to lecturers as they negotiate academic demands and develop their research skills, building their capacity to progress. Taken together, the results highlight the need to support and design integrated academic ecosystems that develop academic scaffolding, scholarly preparedness, and guided mentoring pathways.

Ethical Considerations / Ethical Approval

This study adhered to standard ethical protocols for human related studies. All the participants were voluntary and had given consent to participate before data collection, and they were assured of anonymity before completing the questionnaires. The Research Ethics Commission of Telkom University Indonesia approved this, under the institutional review criteria at that time.

Acknowledgements

The researchers would like to thank the lecturers who freely participated in the survey and Telkom University's academic leadership for supporting them during investigation process. The authors also thank contributors who have made constructive comments when the manuscript was being developed.

Competing interests / Conflicts of interest

There are no conflicts of interest regarding the authorship or publication of this paper. The authors have declared that no competing interests to have influenced the execution or conclusions of this study.

Funding Statement

No external sources of funding were used for this study. All work was done using authors' own institutional resources and also personal support from Telkom University.

REFERENCES

Abramo, G. (2018). Revisiting the scientometric conceptualization of impact and its measurement. *Journal of Informetrics*, 12(3), 590–597. <https://doi.org/https://doi.org/10.1016/j.joi.2018.05.001>

Abramo, G., D'Angelo, C. A., & Carloni, M. (2019). The balance of knowledge flows. *Journal of Informetrics*, 13(1), 1–9. <https://doi.org/https://doi.org/10.1016/j.joi.2018.11.001>

Abramo, G., D'Angelo, C. A., & Di Costa, F. (2021). The scholarly impact of private sector research: A multivariate analysis. *Journal of Informetrics*, 15(3), 101191. <https://doi.org/https://doi.org/10.1016/j.joi.2021.101191>

Abramo, G., D'Angelo, C. A., Di Costa, F., & Solazzi, M. (2009). University–industry collaboration in Italy: A bibliometric examination. *Technovation*, 29(6), 498–507. <https://doi.org/https://doi.org/10.1016/j.technovation.2008.11.003>

Abramo, G., D'Angelo, C. A., & Reale, E. (2019). Peer review versus bibliometrics: Which method better predicts the scholarly impact of publications? *Scientometrics*, 121(1), 537–554. <https://doi.org/10.1007/s11192-019-03184-y>

Åkerlind, G. S. (2008). An academic perspective on research and being a researcher: an integration of the literature. *Studies in Higher Education*, 33(1), 17–31. <https://doi.org/10.1080/03075070701794775>

Al-Kurdi, O. F., El-Haddad, R., & Eldabi, T. (2020). The role of organisational climate in managing knowledge sharing among academics in higher education. *International Journal of Information Management*, 50, 217–227. <https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.05.018>

Allen, T. D., & Eby, L. T. (2008). Mentor commitment in formal mentoring relationships. *Journal of Vocational Behavior*, 72(3), 309–316. <https://doi.org/https://doi.org/10.1016/j.jvb.2007.10.016>

Allen, T. D., Shockley, K. M., & Poteat, L. (2010). Protégé anxiety attachment and feedback in mentoring relationships. *Journal of Vocational Behavior*, 77(1), 73–80. <https://doi.org/https://doi.org/10.1016/j.jvb.2010.02.007>

Anam, K. (2024). Community Perception as a Catalyst for Economic Growth and Digital Transformation in BRICS Integration. *Journal Economic Business Innovation*, 1(3 SE-Articles), 338–351. <https://doi.org/10.69725/jebi.v1i3.180>

Arifah, S., & Rizki Nugraha, A. (2024). The Short Term Earnings Management Ethic and Its Effect on Accounting Education and Corporate Perceptions. *Advances in Accounting Innovation*, 1(1 SE-Article), 27–38. <https://doi.org/10.69725/aai.v1i1.89>

Bell, A. C., Harris, K., & Jerald, M. C. (2024). Flourishing together: Leveraging social-personality psychology in community building for scholars of color. *Social and Personality Psychology Compass*, 18(10), e70009. <https://doi.org/https://doi.org/10.1111/spc3.70009>

Bland, C. J., Center, B. A., Finstad, D. A., Risbey, K. R., & Staples, J. G. (2005). A Theoretical, Practical, Predictive Model of Faculty and Department Research Productivity. *Academic Medicine*, 80(3).

Bland, J. M., & Altman, D. G. (2007). Agreement Between Methods of Measurement with Multiple Observations Per Individual. *Journal of Biopharmaceutical Statistics*, 17(4), 571–582. <https://doi.org/10.1080/10543400701329422>

Bozeman, B., & Gaughan, M. (2011). How do men and women differ in research collaborations? An analysis of the collaborative motives and strategies of academic researchers. *Research Policy*, 40(10), 1393–1402. <https://doi.org/https://doi.org/10.1016/j.respol.2011.07.002>

Brooker, R., & Allum, N. (2024). Investigating the links between questionable research practices, scientific norms and organisational culture. *Research Integrity and Peer Review*, 9(1), 12. <https://doi.org/10.1186/s41073-024-00151-x>

Çalıkoğlu, A., Bulut-Sahin, B., & Aşık, A. (2025). Virtual exchange as a mode of internationalization at a distance: Experiences from Türkiye. *British Journal of Educational Technology*, 56(2), 909–926. <https://doi.org/https://doi.org/10.1111/bjet.13546>

Carter-Sowell, A. R., Vaid, J., Stanley, C. A., Petitt, B., & Battle, J. S. (2019). ADVANCE Scholar Program: enhancing minoritized scholars' professional visibility. *Equality, Diversity and Inclusion: An International Journal*, 38(3), 305–327. <https://doi.org/10.1108/EDI-03-2018-0059>

Chan, E. T., Hekman, D. R., & Foo, M. Der. (2024). An examination of whether and how leader humility enhances leader personal career success. *Human Resource Management*, 63(3), 427–442. <https://doi.org/https://doi.org/10.1002/hrm.22208>

Chanda, H., Mohareb, E., Peters, M., & Harty, C. (2025). Exploring the nexus of solar adoption, sustainability, and rural community development through the role of white commercial farmers: The case of Mkushi, Zambia. *Energy Research & Social Science*, 128, 104336. <https://doi.org/https://doi.org/10.1016/j.erss.2025.104336>

Chao, G. T. (1997). Mentoring Phases and Outcomes. *Journal of Vocational Behavior*, 51(1), 15–28. <https://doi.org/https://doi.org/10.1006/jvbe.1997.1591>

Chen, Y.-Y., Hong, L., & Wang, M. (2025). Integrating Career Development with Socio-emotional Learning for Rural Primary School Children: a School-based Program and Evaluation. *Applied Research in Quality of Life*. <https://doi.org/10.1007/s11482-025-10507-0>

Cheol Shin, J., Jeung Lee, S., & Kim, Y. (2013). Research collaboration across higher education systems: maturity, © 2025 by Author/s

language use, and regional differences. *Studies in Higher Education*, 38(3), 425–440. <https://doi.org/10.1080/03075079.2013.774585>

Chiang, Jack Ting-Ju, Chen, Xiao-Ping, Liu, Haiyang, Akutsu, Satoshi, & Wang, Zheng. (2020). We have emotions but can't show them! Authoritarian leadership, emotion suppression climate, and team performance. *Human Relations*, 74(7), 1082–1111. <https://doi.org/10.1177/0018726720908649>

Chung, E. K., Jung, Y., & Sohn, Y. W. (2017). A moderated mediation model of job stress, job satisfaction, and turnover intention for airport security screeners. *Safety Science*, 98, 89–97. <https://doi.org/https://doi.org/10.1016/j.ssci.2017.06.005>

Craig, A.-M., Harris, J. M., & Woodfield, R. (2025). Collegiality in the complex ecosystem of research in academia: an analysis of a research-intensive university in the UK. *Studies in Higher Education*, 50(12), 2996–3015. <https://doi.org/10.1080/03075079.2024.2448756>

Day, R., & Allen, T. D. (2004). The relationship between career motivation and self-efficacy with protégé career success. *Journal of Vocational Behavior*, 64(1), 72–91. [https://doi.org/https://doi.org/10.1016/S0001-8791\(03\)00036-8](https://doi.org/https://doi.org/10.1016/S0001-8791(03)00036-8)

Deem, R. (2004). Sociology and the sociology of higher education: A missed call or a disconnection? *International Studies in Sociology of Education*, 14(1), 21–46. <https://doi.org/10.1080/09620210500200117>

Desselle, S. P., Andrews, B., Lui, J., & Raja, G. L. (2018). The scholarly productivity and work environments of academic pharmacists. *Research in Social and Administrative Pharmacy*, 14(8), 727–735. <https://doi.org/https://doi.org/10.1016/j.sapharm.2017.09.001>

Desselle, S. P., Raja, L., Andrews, B., & Lui, J. (2018). Perceptions of organizational culture and organizational citizenship by faculty in U.S. colleges and schools of pharmacy. *Currents in Pharmacy Teaching and Learning*, 10(4), 403–412. <https://doi.org/https://doi.org/10.1016/j.cptl.2017.12.017>

Dietz, J. S., & Bozeman, B. (2005). Academic careers, patents, and productivity: industry experience as scientific and technical human capital. *Research Policy*, 34(3), 349–367. <https://doi.org/https://doi.org/10.1016/j.respol.2005.01.008>

Dobele, A. R., & Rundle-Theile, S. (2015). Progression through Academic Ranks: A Longitudinal Examination of Internal Promotion Drivers. *Higher Education Quarterly*, 69(4), 410–429. <https://doi.org/https://doi.org/10.1111/hequ.12081>

Evans, C., Cools, E., & Charlesworth, Z. M. (2010). Learning in higher education – how cognitive and learning styles matter. *Teaching in Higher Education*, 15(4), 467–478. <https://doi.org/10.1080/13562517.2010.493353>

Feldman, A., Divoll, K., & Rogan-Klyve, A. (2009). Research education of new scientists: Implications for science teacher education. *Journal of Research in Science Teaching*, 46(4), 442–459. <https://doi.org/https://doi.org/10.1002/tea.20285>

Felix, B., & Hennekam, S. (2025). The unsustainable nature of the career ecosystem of autistic individuals in Brazil. *Career Development International*, 30(7), 729–744. <https://doi.org/10.1108/CDI-03-2025-0107>

Higgins, M. C., & Kram, K. E. (2001). Reconceptualizing Mentoring at Work: A Developmental Network Perspective. *Academy of Management Review*, 26(2), 264–288. <https://doi.org/10.5465/amr.2001.4378023>

Hindarsah, I., Kania, T. N., Diawati, P., & Fahrudin, A. (2025). Strengthening the entrepreneurial ecosystem through innovation: A case study of Pasundan University. *International Journal of Innovative Research and Scientific Studies*, 8(1), 1760–1769. <https://doi.org/10.53894/ijirss.v8i1.4801>

Hurley, R. F. (1995). Group culture and its effect on innovative productivity. *Journal of Engineering and Technology Management*, 12(1), 57–75. [https://doi.org/https://doi.org/10.1016/0923-4748\(95\)00004-6](https://doi.org/https://doi.org/10.1016/0923-4748(95)00004-6)

Huttunen, I., Upadyaya, K., & Salmela-Aro, K. (2024). Longitudinal associations between adolescents' social-emotional skills, school engagement, and school burnout. *Learning and Individual Differences*, 115, 102537. <https://doi.org/https://doi.org/10.1016/j.lindif.2024.102537>

Ilyas, I. P., & Semiawan, T. (2012). Production-based Education (PBE): The Future Perspective of Education on Manufacturing Excellent. *Procedia - Social and Behavioral Sciences*, 52, 5–14. <https://doi.org/https://doi.org/10.1016/j.sbspro.2012.09.436>

Jung, J., Bozeman, B., & Gaughan, M. (2017). Impact of research collaboration cosmopolitanism on job satisfaction. *Research Policy*, 46(10), 1863–1872. <https://doi.org/https://doi.org/10.1016/j.respol.2017.09.003>

Keller, T. E. (2007). Youth Mentoring: Theoretical and Methodological Issues. In *The Blackwell Handbook of Mentoring* (pp. 21–47). <https://doi.org/https://doi.org/10.1111/b.9781405133739.2007.00003.x>

Khalid, S., Gao, C., Orynbek, G., & Tadesse, E. (2024). Constructing a women-friendly academic ecology: understanding the push and pull forces on Pakistani women academics' research productivity. *Studies in Higher Education*, 49(12), 2740–2759. <https://doi.org/10.1080/03075079.2024.2322099>

Li, X., Wijaya, T. T., Cao, Y., & Zhou, Y. (2025). Influencing factors of behavioral intention to use micro-lectures for teaching among pre-service mathematics teachers in China: a modified UTAUT-2. *Humanities and Social Sciences Communications*, 12(1), 1659. <https://doi.org/10.1057/s41599-025-05898-2>

Michalak, R., & Ellixson, D. (2025). Factors influencing career advancement and tenure in academic librarianship. *The Journal of Academic Librarianship*, 51(5), 103104. <https://doi.org/https://doi.org/10.1016/j.acalib.2025.103104>

Miller, L., Izumi, S., Denfeld, Q., Rosenkranz, S. J., & Hansen, L. (2024). An ecosystem approach to mentoring research faculty in schools of nursing: The pacific northwest interdependence mentoring model. *Nursing Outlook*, 72(3), 102147. <https://doi.org/https://doi.org/10.1016/j.outlook.2024.102147>

Mtawa, N. N., Fongwa, S. N., & Wangenge-Ouma, G. (2016). The scholarship of university-community engagement: Interrogating Boyer's model. *International Journal of Educational Development*, 49, 126–133. <https://doi.org/https://doi.org/10.1016/j.ijedudev.2016.01.007>

Mulyoto. (2019). Anatolian Journal of Education. *Anatolian Journal of Education*, 4(1), 13–22.

Murtono, & Prayitno, M. (2025). Postgraduate Learning Innovation in the Age of Artificial Intelligence. *Advances Educational Innovation*, 1(3 SE-Articles), 132–142. <https://doi.org/10.69725/aei.v1i3.241>

Niso, G., Krol, L. R., Combrisson, E., Dubarry, A. S., Elliott, M. A., François, C., Héjja-Brichard, Y., Herbst, S. K., Jerbi, K., Kovic, V., Lehongre, K., Luck, S. J., Mercier, M., Mosher, J. C., Pavlov, Y. G., Puce, A., Schettino, A., Schön, D., Sinnott-Armstrong, W., ... Chaumon, M. (2022). Good scientific practice in EEG and MEG research: Progress and perspectives. *NeuroImage*, 257, 119056. <https://doi.org/https://doi.org/10.1016/j.neuroimage.2022.119056>

Owan, V. J., Ameh, E., & Anam, E. G. (2024). Collaboration and institutional culture as mediators linking mentorship and institutional support to academics' research productivity. *Educational Research for Policy and Practice*, 23(1), 19–44. <https://doi.org/10.1007/s10671-023-09354-3>

Passmore, J., Peterson, D. B., & Freire, T. (2012). The Psychology of Coaching and Mentoring. In *The Wiley-Blackwell Handbook of the Psychology of Coaching and Mentoring* (pp. 1–11). <https://doi.org/https://doi.org/10.1002/9781118326459.ch1>

Peterson, M. W., & White, T. H. (1992). Faculty and administrator perceptions of their environments: Different views or different models of organization? *Research in Higher Education*, 33(2), 177–204. <https://doi.org/10.1007/BF00973578>

Pissardini, P. E., Godinho Filho, M., Callefi, M. H., & Devós Ganga, G. M. (2025). Organisational function synergy: capabilities enabled by smart industrial products. *Management Decision*, 1–37. <https://doi.org/10.1108/MD-12-2024-2887>

Prayitno, M., Kanzunnudin, M., Saif, G. M. S., & Dwianto, A. (2025). Adaptive Curriculum, Digital Literacy, and Global Collaboration for Enhancing Multicultural Competence in Higher Education. *International Journal of Learning, Teaching and Educational Research*, 24(8), 296–320. <https://doi.org/10.26803/ijlter.24.8.13>

Quick, Kathryn S., & Feldman, Martha S. (2011). Distinguishing Participation and Inclusion. *Journal of Planning Education and Research*, 31(3), 272–290. <https://doi.org/10.1177/0739456X11410979>

Ragins, B. R., & McFarlin, D. B. (1990). Perceptions of mentor roles in cross-gender mentoring relationships. *Journal of Vocational Behavior*, 37(3), 321–339. [https://doi.org/https://doi.org/10.1016/0001-8791\(90\)90048-7](https://doi.org/https://doi.org/10.1016/0001-8791(90)90048-7)

Rath, A., Jena, L. K., Goswami, M., & Pal, S. (2025). Why not a women-to-women mentoring dyad? A grounded theory approach to address inquisitiveness. *European Journal of Management Studies*, 1–20. <https://doi.org/10.1108/EJMS-03-2025-0026>

Rauvola, R. S., Rudolph, C. W., & Zacher, H. (2019). *Innovating Career Counselling for Middle-Aged and Older Adults BT - Handbook of Innovative Career Counselling* (J. G. Maree (ed.); pp. 307–331). Springer International Publishing. https://doi.org/10.1007/978-3-030-22799-9_18

Romel, H., Tadesse, T., & Jibat, N. (2021). Teacher quality, self-efficacy, and quality teaching in Ethiopian primary schools: An integrated sociological and psychological perspective. *Studies in Educational Evaluation*, 70, 101029. <https://doi.org/https://doi.org/10.1016/j.stueduc.2021.101029>

Rudolph, C. W., Rauvola, R. S., & Zacher, H. (2018). Leadership and generations at work: A critical review. *The Leadership Quarterly*, 29(1), 44–57. <https://doi.org/https://doi.org/10.1016/j.lequa.2017.09.004>

Salmela-Aro, K., & Upadyaya, K. (2018). Role of demands-resources in work engagement and burnout in different career stages. *Journal of Vocational Behavior*, 108, 190–200. <https://doi.org/https://doi.org/10.1016/j.jvb.2018.08.002>

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). *Partial Least Squares Structural Equation Modeling BT - Handbook of Market Research* (C. Homburg, M. Klarmann, & A. Vomberg (eds.); pp. 587–632). Springer International Publishing. https://doi.org/10.1007/978-3-319-57413-4_15

Scott, S. G., & Bruce, R. A. (1994). Determinants of Innovative Behavior: A Path Model of Individual Innovation in the Workplace. *Academy of Management Journal*, 37(3), 580–607. <https://doi.org/10.5465/256701>

Seehusen, D. A., Rogers, T. S., Al Achkar, M., & Chang, T. (2021). Coaching, Mentoring, and Sponsoring as Career Development Tools. *Fam Med*.

Setiawati, R., Noviarita, H., Haryanto, S., Anshori, A., & Dwianto, A. (2024). Islamic Community Empowerment

in Economic Growth through Sugar Cane Farming Partnerships. *Qubahan Academic Journal*, 4(3), 579–606. <https://doi.org/10.48161/qaj.v4n3a993>

Sharp, J. G., Hemmings, B., Kay, R., Callinan, C., Sharp, J. G., Hemmings, B., Kay, R., & When, C. C. (2016). *When worlds collide: identity, culture and the lived experiences of research when 'teaching-led.'* 9486(March). <https://doi.org/10.1080/0309877X.2013.858679>

Shin, J. C. (2011). Teaching and research nexuses across faculty career stage, ability and affiliated discipline in a South Korean research university. *Studies in Higher Education*, 36(4), 485–503. <https://doi.org/10.1080/03075071003759052>

Shin, J. C. (2012). Higher education development in Korea: western university ideas, Confucian tradition, and economic development. *Higher Education*, 64(1), 59–72. <https://doi.org/10.1007/s10734-011-9480-5>

Solga, H., Rusconi, A., & Hofmeister, S. (2025). Gender biases in assistant professor recruitment: Does discipline matter? *Research Policy*, 54(3), 105170. <https://doi.org/10.1016/j.respol.2024.105170>

Suherlan, H. (2017). Strategic alliances in institutions of higher education: a case study of Bandung and Bali Institutes of Tourism in Indonesia. *International Journal of Tourism Cities*, 3(2), 158–183. <https://doi.org/10.1108/IJTC-08-2016-0022>

Suwignyo, A. (2024). Higher Education as an Instrument of Decolonisation: The Community Service Programme in Indonesia, 1950–1969. *Asian Studies Review*, 48(3), 447–466. <https://doi.org/10.1080/10357823.2023.2222225>

Syahrudin, M., & Suryani, I. (2025). Artificial Intelligence Adoption and Productivity in Emerging Markets: Firm Level Evidence. *Journal of Economic Business Innovation*, 2(1 SE-Articles), 145–161. <https://doi.org/10.69725/jebi.v2i1.263>

Trigwell, K., & Shale, S. (2004). Student learning and the scholarship of university teaching. *Studies in Higher Education*, 29(4), 523–536. <https://doi.org/10.1080/0307507042000236407>

Van Miegroet, H., Glass, C., Callister, R. R., & Sullivan, K. (2019). Unclogging the pipeline: advancement to full professor in academic STEM. *Equality, Diversity and Inclusion: An International Journal*, 38(2), 246–264. <https://doi.org/10.1108/EDI-09-2017-0180>

Williams, J. S., Walker, R. J., Burgess, K. M., Shay, L. A., Schmidt, S., Tsevat, J., Campbell, J. A., Dawson, A. Z., Ozieh, M. N., Phillips, S. A., & Egede, L. E. (2023). Mentoring strategies to support diversity in research-focused junior faculty: A scoping review. *Journal of Clinical and Translational Science*, 7(1), e21. <https://doi.org/DOI: 10.1017/cts.2022.474>

Ynalvez, M. A., & Shrum, W. M. (2011). Professional networks, scientific collaboration, and publication productivity in resource-constrained research institutions in a developing country. *Research Policy*, 40(2), 204–216. <https://doi.org/https://doi.org/10.1016/j.respol.2010.10.004>

Yu, S., & Bozeman, B. (2025). Promoting Research Utilization Through Social Media: Evidence from U.S. Public Administration and Policy Researchers. *Public Performance & Management Review*, 48(1), 229–253. <https://doi.org/10.1080/15309576.2024.2412182>

Zacher, H., & Rudolph, C. W. (2021). Relationships between psychological contract breach and employee well-being and career-related behavior: The role of occupational future time perspective. *Journal of Organizational Behavior*, 42(1), 84–99. <https://doi.org/https://doi.org/10.1002/job.2495>

Appendix data A1. Comprehensive Demographic Profile of Respondents

Category	Sub-category	Frequency	Percentage (%)
Gender	Male	85	46.2
	Female	99	53.8
Academic Rank / Functional Position	Instructor	120	65.22
	Assistant Expert	27	14.67
	Senior Lecturer	29	15.76
	Associate Professor	6	3.26
	Professor	2	1.09
Type of Higher Education Institution	Private University (PTS)	139	75.54
	Public University (PTN)	45	24.46
Geographical Distribution (Province)	DKI Jakarta	69	37.5
	West Java	28	15.22
	East Java	23	12.5
	Central Java	11	5.98
	DI Yogyakarta (DIY)	9	4.89
	North Sumatra	7	3.8
	South Sumatra	5	2.72
	Banten	5	2.72
	Kalimantan (various provinces)	2	1.09
	Sulawesi (various provinces)	2	1.09
	Nusa Tenggara (NTT/NTB)	2	1.09
	Papua	1	0.54
	Bali	1	0.54
	Others (each 1 respondent)	19	10.33
	Total	184	100

Appendix data A2. Operationalization of Variables

Variable	Code	Dimension	Indicator	Scale	Source
Research Culture (RC)	RC1	Environment	Adequacy of research facilities, laboratories, and digital libraries	Likert 1–5	(Evans et al., 2010)
	RC2	Environment	Social environment supports scientific discussion & collaboration	Likert 1–5	(C. J. Bland et al., 2005)
	RC3	Values	Institutional emphasis on research integrity & originality	Likert 1–5	(Sharp et al., 2016)
	RC4	Values	Research regarded as institutional priority	Likert 1–5	
	RC5	Leadership Support	Clear research vision from leadership	Likert 1–5	(Cheol Shin et al., 2013)
	RC6	Leadership Support	Policy and funding support for research	Likert 1–5	(Abramo, 2018; Abramo et al., 2009; Abramo, D'Angelo, & Carloni, 2019)

	RC7	Habits	Routine research seminars, discussions, colloquia	Likert 1–5	(Åkerlind, 2008)
	RC8	Habits	Regular publication of research output	Likert 1–5	(J. M. Bland & Altman, 2007)
	RC9	Research Networks	Ease of interdisciplinary collaboration	Likert 1–5	(Bozeman & Gaughan, 2011; Jung et al., 2017)
	RC10	Adaptability	Institution adapts to research trends and technology	Likert 1–5	(Cheol Shin et al., 2013; Shin, 2012)
Academic Climate (AC)	AC1	Research Innovation	Encouragement for innovative, novel research	Likert 1–5	(Scott & Bruce, 1994)
	AC2	Communication Flow	Smooth vertical and horizontal academic communication	Likert 1–5	(Peterson & White, 1992)
	AC3	Supervisory Support	Constructive academic supervision & guidance	Likert 1–5	(Chiang et al., 2020)
	AC4	Administrative Support	Efficiency of research administrative processes	Likert 1–5	(Deem, 2004)
	AC5	Team Spirit	Collegiality, mutual support, positive teamwork	Likert 1–5	(Huttunen et al., 2024; Salmela-Aro & Upadyaya, 2018)
	AC6	Resource Availability	Sufficient research tools, facilities, and funding	Likert 1–5	(Shin, 2011, 2012)
	AC7	Collaboration	Frequency & quality of research collaborations	Likert 1–5	(Dietz & Bozeman, 2005; Yu & Bozeman, 2025)
Mentorship (MT)	MT1	Career Development Support	Mentor assists skill development and research capabilities	Likert 1–5	(Allen & Eby, 2008; Day & Allen, 2004)
	MT2	Career Development Support	Mentor provides career advancement information	Likert 1–5	(Chao, 1997; Higgins & Kram, 2001; Passmore et al., 2012)
	MT3	Psychosocial Support	Mentor provides emotional support and encouragement	Likert 1–5	(Keller, 2007; Ragins & McFarlin, 1990)
	MT4	Psychosocial Support	Mentor is trustworthy and open to discussion	Likert 1–5	(Allen et al., 2010)
	MT5	Role Modeling	Mentor models ethical and professional conduct	Likert 1–5	(Rauvola et al., 2019; Rudolph et al., 2018; Zacher & Rudolph, 2021)
	MT6	Role Modeling	Mentor demonstrates effective and productive work habits	Likert 1–5	(Seehusen et al., 2021)
Lecturer Career Development (LCD)	LCD1	Teaching	Innovation in teaching materials and pedagogy	Likert 1–5	(Trigwell & Shale, 2004)
	LCD2	Teaching	Academic advising and student supervision	Likert 1–5	(Feldman et al., 2009)
	LCD3	Research	Publication productivity in reputable journals	Likert 1–5	(Abramo et al., 2009, 2021; Abramo, D'Angelo, & Reale, 2019)
	LCD4	Research	Grant acquisition and participation in academic forums	Likert 1–5	(Shin, 2012)
	LCD5	Community Service	Academic consulting & community empowerment activities	Likert 1–5	(Mtawa et al., 2016)

	LCD6	Supporting Activities	Engagement in journal management, committees, professional orgs	Likert 1–5	(Quick & Feldman, 2011)
--	------	-----------------------	---	------------	-------------------------