

Characterization of Competencies for Micro-entrepreneurs and their Impact on Productive Development: A Data-Driven Analysis in Ecuador

Jazmín Pérez-Salazar¹, Cristian Vidal-Silva^{2*}

¹ Facultad de Ciencias Sociales, Educación Comercial y Derecho, Universidad Estatal de Milagro, Milagro, Ecuador Email: jperezs4@unemi.edu.ec

² Departamento de Visualización Interactiva y Realidad Virtual Universidad de Talca, Avenida Lircay S/N, Talca, 3460000, Maule, Chile, Email: cvidal@utalca.cl

*Corresponding Author: cvidal@utalca.cl

Citation: Salazar, J. P. & Silva, C. V. (2025). Characterization of Competencies for Micro-entrepreneurs and their Impact on Productive Development: A Data-Driven Analysis in Ecuador, *Journal of Cultural Analysis and Social Change*, 10(4), 4160-4169. <https://doi.org/10.64753/jcasc.v10i4.3747>

Published: December 28, 2025

ABSTRACT

Personal and professional competencies have become key factors in the commercial performance of micro-entrepreneurs. This sector maintains high participation in the productive activity of developing countries, yet the lack of knowledge regarding these skills constitutes a significant obstacle to growth. This research determines the relationship between micro-entrepreneurs' competencies and their productive development through a bivariate analysis applied to 687 micro-entrepreneurs located in Zone 5 of Ecuador. The study adapts a model composed of four competency groups (self-regulation, motivation, empathy, social ability) distributed across three areas of action (business, educational, and social). The methodology utilizes statistical processing via SPSS, including ANOVA and multiple regression models. The results demonstrate a direct proportion between competencies and productivity. Furthermore, the data highlights a preference for "Initiative" (90%) while revealing a critical gap in "Cognitive Capacity" (12%) and professional training. The regression analysis identified job performance as the strongest predictor of productive development ($\beta = 0.218$, $p < .001$), followed by personal and professional aptitudes. These findings suggest that strengthening these capacities is essential not only for survival but to guarantee self-sustainability. From a technological perspective, these findings also offer guidance for the design of information systems aligned with the practical needs and cognitive characteristics of micro-entrepreneurs.

Keywords: Micro-entrepreneur productive development, competencies data analysis regression model SME skills.

INTRODUCTION

Micro, small, and medium-sized enterprises (MSMEs) constitute a central pillar of economic development, employment generation, and social mobility in most developing countries [1], [2]. Their contribution is particularly significant in Latin America, where they represent almost the entire productive fabric and provide a substantial share of national employment [3], [4]. In Ecuador, this pattern is especially pronounced. As summarized in Table 1, MSMEs account for approximately 99% of all active companies, with micro-enterprises representing more than 90% of this segment and generating close to 60% of jobs nationwide. This quantitative relevance contrasts with their comparatively modest contribution to productivity and long-term business growth, highlighting persistent challenges related to strategic management, technological adoption, and human-capital development.

Table 1: Economic Landscape of MSMEs in Ecuador

Indicator	Statistic / Value
Total active companies	≈ 900,000
MSME participation	99% of total <u>companies</u>
Micro-enterprise share	>90% of the MSME sector
Employment contribution	≈ 60% of national jobs
Target region (study)	Zone 5: Guayas, Los Ríos, Bolívar, Santa Elena

Although structural barriers such as limited access to credit or technology are well documented, a growing body of research points to an equally critical internal factor: the competencies of micro-entrepreneurs themselves. These competencies—ranging from self-management and motivation to negotiation and teamwork—have been associated with better business performance, increased resilience, and improved adaptation to changing environments [5]–[7]. However, most competency frameworks originate from studies on managers in medium or large firms, leaving a gap in models tailored to micro-enterprises operating in heterogeneous and often vulnerable environments. To address this limitation, Fernández-Ronquillo et al. [8] proposed a competency model specifically designed for micro-entrepreneurs in depressed or resource-constrained settings. The model organizes 27 competencies into four clusters (self-management, motivation, empathy, and social skills) and distributes them across three areas of action (business, educational, and social). This makes it particularly suitable for empirical studies aiming to understand the behavioral, relational, and decision-making dimensions that shape micro-enterprise performance.

The present study adopts this framework as the basis for analyzing the competency profile of micro-entrepreneurs in Ecuador's Zone 5. Figure 1 summarizes the conceptual relationship guiding the research. It assumes that the sociodemographic and contextual characteristics of the entrepreneur influence the structure of their competencies, which in turn affects the perceived productive development of the business. This simple but operational model provides a consistent foundation for evaluating how specific competencies strengthen—or limit—the daily functioning and overall sustainability of micro-enterprises.

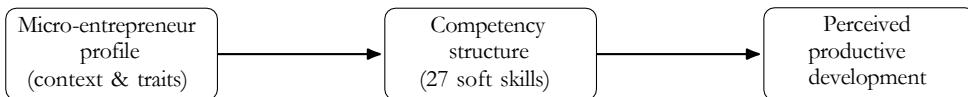
Zone 5 offers a particularly relevant context for this type of analysis, as it combines the dynamism of highly competitive urban markets (e.g., Guayas) with the constraints of semi-rural or peripheral provinces (e.g., Bolívar). These territorial contrasts suggest that the prevalence and activation of competencies may vary across sectors, locations, and levels of business maturity, making the region an appropriate case for a detailed empirical assessment.

Based on these considerations, this study pursues two applied objectives: (i) to characterize the competency structure of micro-entrepreneurs in Zone 5, and (ii) to estimate the statistical relationship between these competencies and their perceived productive development. To achieve this, a quantitative, non-experimental design was implemented using a stratified probabilistic sample of 687 micro-entrepreneurs.

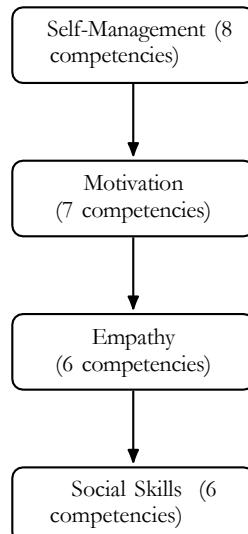
The remainder of this article is organized as follows. Section 2 reviews the main contributions on competency models and micro-entrepreneurial performance. Section 3 presents the methodology, including sampling procedures, instrument design, and statistical techniques. Section 4 reports the empirical findings, while Section 5 discusses their practical implications for micro-enterprise development and technological adoption. Finally, Section 6 concludes the article with recommendations and directions for future research.

RELATED WORK

Research on entrepreneurial competencies has evolved considerably over the past five decades, moving from early psychological approaches to more integrative frameworks that incorporate behavioral, social, and organizational dimensions. The foundational work of McClelland et al. [9] established the notion that success in entrepreneurial contexts cannot be explained solely by cognitive intelligence, but rather by underlying characteristics such as motivation, persistence, and the capacity to act under uncertainty. This principle was later expanded by Boyatzis [10], who conceptualized competencies as observable behaviors linked to superior performance and rooted in deeper emotional, cognitive, and motivational attributes.


The relevance of competencies in micro- and small-enterprise performance has been widely documented. Several studies report that traits such as initiative, opportunity recognition, negotiation, and resilience significantly influence business continuity, revenue stability, and adaptability in changing markets [5], [11], [12]. In contexts characterized by informality or constrained resources, competencies related to self-regulation and social interaction appear particularly important, as micro-entrepreneurs often operate without formal managerial structures and rely heavily on personal networks and day-to-day decision making [13], [14].

Despite these contributions, most competency models in the literature were designed for medium or large organizations with established hierarchies and standardized processes [7], [15]. Their applicability to micro-entrepreneurs, which in many cases function as single-person or family-run businesses, is limited. Micro-entrepreneurs frequently assume multiple roles simultaneously: they manage operations, negotiate with suppliers, interact directly with clients, and perform administrative tasks. As a result, the competencies required for their effective performance are multidimensional and context-dependent.


Addressing this gap, the model proposed by Fernández-Ronquillo et al. [8] represents one of the few frameworks specifically developed for micro-entrepreneurs operating in vulnerable or depressed environments. The model organizes 27 competencies into four clusters based on emotional intelligence principles: self-management, motivation, empathy, and social skills. These clusters are then distributed across three domains of action (business, educational, and social), acknowledging that micro-entrepreneurs must navigate relational, operational, and learning-oriented demands simultaneously. Figure 2 depicts this multidimensional structure.

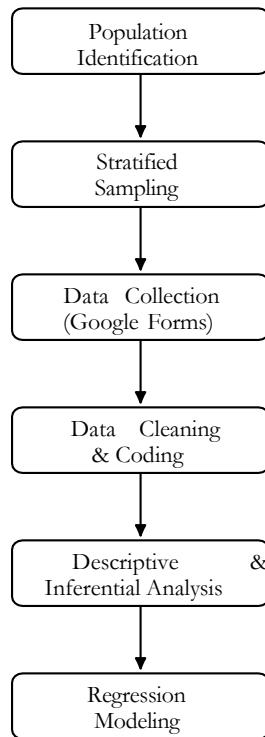
Empirical studies in developing economies support the relevance of this type of model. For instance, Klepic [6] finds that competency-based human resource management correlates with improved performance among SMEs in Eastern Europe, while Mubarik et al. [16] demonstrate that entrepreneurial competencies significantly influence the success of micro-enterprises in South Korea. Other regional analyses, including those conducted in Latin America, emphasize the centrality of negotiation, communication, and adaptability for sustaining micro-businesses in dynamic markets [17], [18].

However, research also notes consistent weaknesses across micro-entrepreneurial populations, particularly in competencies related to long-term planning, innovation, and cognitive capacity [19], [20]. These gaps limit the ability of micro-enterprises to scale or incorporate digital technologies effectively, a factor increasingly relevant as governments and development agencies promote digital transformation strategies for the sector. In sum, existing literature underscores the need for competency models that reflect the realities of micro-entrepreneurs and their operational environments. The Fernández-Ronquillo framework [8] provides a structured and context-sensitive basis for such analysis, making it suitable for empirical studies focused on micro-enterprise

Figure 1: Conceptual model illustrating how the micro-entrepreneur's contextual profile shapes the competency structure, which in turn influences perceived productive development.

Figure 2: Four competency clusters of the Fernández-Ronquillo framework, used to structure the behavioral and relational dimensions analyzed in this study. development, particularly in regions where economic activity is heterogeneous and predominantly informal, such as Ecuador's Zone 5.

METHODS


Research Design

The study adopted a quantitative, non-experimental, cross-sectional design aimed at characterizing the competency structure of micro-entrepreneurs in Ecuador's Zone 5 and examining its relationship with perceived

productive development. Given the applied nature of the research, the design emphasized empirical measurement and statistical association rather than causal inference. The methodological workflow, presented in Fig. 3, summarizes the sequential stages followed throughout the study, from population identification to statistical modeling.

Population and Sampling

The target population consisted of $N = 135,107$ registered micro-enterprises located in the provinces of Guayas, Los Ríos, Bolívar, and Santa Elena (Zone 5). The Galápagos province was excluded due to logistical constraints and structural differences in its economic dynamics.

Figure 3: Sequential methodological workflow summarizing population identification, sampling, data collection, cleaning, and statistical modeling.

To obtain a representative sample, a probabilistic stratified sampling procedure was implemented. Strata were defined by province, and sample size was calculated using the finite population formula with a 95% confidence level and a 4% margin of error. This resulted in a final sample of $n = 687$ micro-entrepreneurs.

Within each province, simple random sampling was applied to ensure equal probability of selection. The distribution of the sample reflected the relative size of each provincial stratum, with Guayas comprising the largest share due to its higher business density.

Participants

Participants were active micro-entrepreneurs operating in one of three economic sectors: commerce, services, or industry. Data collection was conducted in person with the support of trained undergraduate students from the State University of Milagro (UNEMI), who visited business locations to ensure accurate responses and minimize non-response bias. This process took place between March and July 2024 through in-person visits conducted by trained undergraduate students.

Instrument

Data were collected using a structured questionnaire composed of four sections:

- **Demographics:** business type, location, age of the enterprise, and average revenue.
- **Productive Development Scale:** a seven-item construct evaluating efficiency, efficacy, and effective use of resources.

- **Competency Dimensions:** sixteen items grouped into job performance, personal aptitudes, and professional aptitudes.
- **Competency Inventory:** twenty-seven competencies derived from the Fernández-Ronquillo model, organized by cluster and domain of action.

All perception-based items used a 5-point Likert scale (1 = “Never” to 5 = “Always”). The instrument was validated by expert judgment to ensure consistency with the theoretical framework and relevance to the micro-enterprise context. A five-point Likert scale was selected because it offers an optimal balance between response discrimination and response understanding in field studies with heterogeneous educational backgrounds. Previous research in applied social sciences recommends this format to reduce central-tendency bias and facilitate interpretation.

Ethical Considerations

Following the ethical principles of the Declaration of Helsinki, participants were informed about the purpose of the study, the voluntary nature of their participation, and the confidentiality of their responses. Informed consent was obtained digitally before completing the questionnaire. Given the non-experimental and low-risk nature of the study, no institutional ethics committee approval was required.

Data Processing

Data were collected via Google Forms and exported to IBM SPSS Statistics for processing. Preliminary steps included verification of completeness, removal of inconsistent entries, and coding of categorical variables. Missing data were minimal (< 2%) and handled through listwise deletion, as the rate did not compromise statistical power.

Data Analysis

The analysis proceeded in four stages:

- 1) **Descriptive statistics** to characterize the sample and sector distribution.

Table 2: Reliability Analysis (Cronbach’s Alpha)

Dimension	Items	α
Productive Development	6	0.62
Global Competencies	16	0.81
Job Performance	7	0.76
Personal Aptitudes	5	0.60
Professional Aptitudes	4	0.60

- 2) **Reliability assessment** using Cronbach’s alpha (α) for all multi-item constructs. Following [21], [22], coefficients above 0.60 were considered acceptable for exploratory social research.
- 3) **Inferential analysis** using Pearson correlations to examine linear associations and one-way ANOVA to identify differences across groups (e.g., sector, location, business age, revenue).
- 4) **Multiple linear regression** to estimate the predictive effect of competency dimensions (job performance, personal aptitudes, professional aptitudes) on perceived productive development.

All tests were conducted with a significance threshold of $p < 0.05$. Regression assumptions (normality, homoscedasticity, and multicollinearity) were evaluated and met, ensuring the validity of the model estimates.

RESULTS

Descriptive Findings

The final sample consisted of 687 micro-entrepreneurs distributed across the four provinces of Zone 5. The services sector represented the largest share of the sample (53.8%), followed by commerce (35.4%) and industry (10.8%). This distribution aligns with the economic structure of the region, where service-based micro-enterprises predominate in both urban and semi-urban areas.

Reliability Analysis

Internal consistency was examined using Cronbach’s alpha (α) for all multi-item constructs. As shown in Table 2, reliability coefficients ranged from 0.60 to 0.81, indicating acceptable to good internal consistency for exploratory research. The global competency construct achieved the highest reliability (0.81), while productive development showed moderate consistency (0.62).

Correlation Analysis

Pearson correlation coefficients were computed to explore associations between competency dimensions and productive development. All correlations were positive and statistically significant at the 1% level.

As displayed in Table 3, job performance demonstrated the strongest association with productive development ($r = 0.407$), followed by professional aptitudes ($r = 0.333$) and personal aptitudes ($r = 0.326$). The global competency construct also showed a moderate positive correlation with productive development ($r = 0.458$).

Table 3: Pearson Correlation Matrix

PD	JP	PA	PrA
Productive Development (PD)	1.000	—	—
Job Performance (JP)	0.407**	1.000	—
Personal Aptitudes (PA)	0.326**	0.468**	1.000
Professional Aptitudes (PrA)	0.333**	0.421**	0.364**
** $p < 0.01$			1.000

Table 4: ANOVA Results for Group Comparisons

Factor	F	Sig.
Business Type	0.948	0.388
Geographic Location	3.195	0.023
Business Age (years)	4.998	0.001
Gross Revenue (USD)	6.494	0.000

ANOVA RESULTS

A one-way ANOVA was conducted to identify differences in perceptions of productive development according to business type, geographic location, business age, and gross revenue.

Table 4 summarizes the results. Significant differences ($p < 0.05$) were observed for geographic location, business age, and gross revenue. No significant differences were found across business sectors (commerce, services, industry), suggesting that perceptions of development do not vary substantially by activity type.

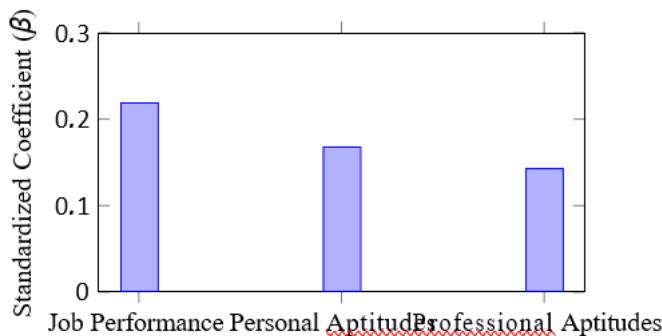
Regression Model

A multiple linear regression model was estimated to assess the predictive effect of the three competency dimensions on productive development. The resulting equation is:

$$Y = 2.017 + 0.218X_1 + 0.167X_2 + 0.142X_3 + \epsilon$$

where Y is productive development, and X_1 , X_2 , and X_3 represent job performance, personal aptitudes, and professional aptitudes, respectively.

The model was statistically significant (ANOVA: $F = 61.203$, $p < 0.01$), explaining a meaningful proportion of variance in productive development.


Table 5 presents the standardized coefficients. Job performance emerged as the strongest predictor ($\beta = 0.218$), followed by personal aptitudes ($\beta = 0.167$) and professional aptitudes ($\beta = 0.142$).

Graphical Representation of Predictors

For visualization purposes, Fig. 4 illustrates the relative contribution of each competency dimension to productive development. The figure highlights the predominance of job performance as the main driver of perceived business growth.

Table 5: Multiple Regression Coefficients

Predictor	β	t	Sig.
Constant	—	10.564	0.000
Job Performance	0.218	6.732	0.000
Personal Aptitudes	0.167	3.504	0.000
Professional Aptitudes	0.142	4.408	0.000

Figure 4: Standardized regression coefficients showing the relative contribution of each competency dimension to productive development.

DISCUSSION

The findings of this study provide a detailed view of the competency structure of micro-entrepreneurs in Ecuador's Zone 5 and its relationship with productive development. Overall, the results confirm that competencies are not merely complementary traits but key predictors of business performance. This aligns with previous research indicating that behavioral and relational skills significantly influence the performance and sustainability of micro-enterprises in developing economies [5], [13], [16].

The Predominance of Execution-Oriented Competencies

Among the three competency dimensions examined, job performance emerged as the strongest predictor of productive development. This dimension includes competencies related to operational efficiency, perseverance, decision-making, and the ability to manage day-to-day business activities. The strong association identified in the regression model reflects a common pattern observed in micro-enterprises across Latin America: entrepreneurs tend to rely heavily on practical, experience-based competencies rather than on formal training or long-term strategic planning [23], [24].

This configuration is consistent with what some authors describe as a “survival-oriented entrepreneurial profile,” characterized by high initiative, adaptability, and immediate problem-solving skills but limited development of cognitive or planning-related competencies [25]. In environments with high informality, fluctuating demand, and scarce institutional support, micro-entrepreneurs often prioritize short-term decisions to maintain business continuity. The present

findings reinforce this pattern, showing that while micro-entrepreneurs in Zone 5 display strong initiative and negotiation skills, they also exhibit notable weaknesses in cognitive capacity and professional aptitudes.

Competency Gaps and Structural Challenges

The low scores observed in competencies such as cognitive capacity, planning, and innovation reveal a structural gap with direct implications for business growth. Entrepreneurs who lack these competencies may struggle to interpret financial information, adapt processes, or engage in long-term decision-making. Similar trends have been noted in other developing contexts, where limited formal education and heavy operational workloads reduce the opportunities entrepreneurs have to strengthen these skills [26]–[28].

These gaps also help explain the significant differences found in the ANOVA results. For instance, entrepreneurs with higher gross revenue reported more positive perceptions of productive development, suggesting that businesses with better financial performance may have more resources or stability to invest in training and capability-building. Similarly, the effect of geographic location indicates that entrepreneurs in provinces with more dynamic commercial environments benefit from greater exposure to competition, networks, and market opportunities—all of which may encourage the development of competencies related to negotiation, communication, and adaptation.

Interpreting the Competency–Development Link

The regression model demonstrates that the three competency dimensions jointly contribute to perceived productive development. This confirms that productive development is a multifactorial construct influenced by behavioral, motivational, and strategic elements. Although job performance plays the leading role, personal and professional aptitudes also show meaningful contributions. These results suggest that while operational skills may sustain the business in the short term, complementary competencies, such as self-reflection, continuous learning, and analytical ability—support more sustainable business trajectories.

This reinforces the idea that productive development cannot be understood solely through traditional economic indicators. Instead, it is shaped by the entrepreneur's ability to learn, adapt, and manage the relational aspects of the business. Prior studies highlight that micro-enterprises with balanced competency profiles are better positioned to incorporate improvements, respond to external shocks, and explore new opportunities [6], [8]. The findings here are consistent with those conclusions, demonstrating that productive development increases when competencies are strengthened across different areas.

Implications for Capacity-Building Initiatives

From an applied perspective, the competency gaps identified point to clear opportunities for targeted intervention.

Training programs for micro-entrepreneurs in Zone 5 should prioritize strengthening cognitive and planning-related competencies, particularly those linked to innovation, financial interpretation, and systematic problem-solving. Given that micro-entrepreneurs often have limited time to participate in formal training, educational interventions should be short, flexible, and oriented toward practical application.

The strong association between job performance and productive development suggests that training approaches based on "learning by doing" may be particularly effective. Programs that integrate practical exercises, simulations, and scenario-based challenges can support skill acquisition while respecting the time constraints of micro-entrepreneurs. At the same time, addressing professional aptitude gaps requires more structured support, such as mentorship programs, peer-learning networks, or partnerships with local universities and technical institutes.

Contextual Considerations

Finally, the significant effects detected by the ANOVA highlight the importance of territorial and economic context when designing development strategies. Differences in infrastructure, market size, and institutional support across the four provinces of Zone 5 influence the ways in which competencies are activated and perceived. This suggests that policies aimed at strengthening micro-enterprises should incorporate territorial differentiation. Entrepreneurs in urban centers may benefit from programs focused on innovation and competitiveness, whereas those in rural or semi-rural areas may require support focused on collaboration, market access, and community-based networks.

In summary, the results indicate that strengthening the competency profile of micro-entrepreneurs is essential for improving productive development in Zone 5. While current strengths appear to support survival and operational continuity, significant gaps in cognitive and strategic competencies may limit long-term growth if not addressed through targeted intervention.

Implications for Information Systems and Engineering Practice

The competency profile identified in this study has several implications for the design, implementation, and adoption of technological solutions within the micro-enterprise sector. The low prevalence of competencies associated with cognitive capacity, analytical reasoning, and long-term planning suggests that many micro-entrepreneurs operate with limited ability to process abstract information or interpret complex system outputs. This represents a critical consideration for engineers and system designers seeking to promote digital transformation among micro-enterprises in developing regions.

First, the findings indicate that software intended for micro-entrepreneurs must minimize cognitive load. Interfaces that rely heavily on dashboards, multistep configuration processes, or abstract visualizations may not be suitable for users whose daily decision-making is driven primarily by immediate operational concerns and intuitive reasoning. Instead, systems should prioritize simplified interaction models, clear visual cues, and workflows aligned with the practical routines of micro-businesses. Designs that emphasize task automation, default recommendations, and step-by-step guidance can reduce friction and enhance usability.

Second, the predominance of execution-oriented competencies—such as initiative and adaptability—suggests that micro-entrepreneurs respond better to tools that support rapid, hands-on experimentation rather than those requiring prolonged onboarding or training. This aligns with evidence from human-computer interaction research indicating that users with limited formal training benefit from progressive disclosure of functionality, contextual help, and scenario-based prompts. Systems that incorporate these elements are more likely to integrate smoothly into daily operations.

Third, the competency gaps identified highlight the importance of decision-support mechanisms. Micro-entrepreneurs with weak analytical skills may struggle to interpret financial reports, evaluate investment options, or forecast demand. Therefore, information systems should incorporate embedded intelligence capable of translating raw data into actionable insights. Examples include automated alerts, simple diagnostics, and rule-based recommendations that assist entrepreneurs in understanding key performance indicators without requiring advanced analytical capabilities.

Finally, the contextual differences observed across provinces imply that technological solutions must account for territorial variations in connectivity, market structure, and business maturity. For instance, micro-entrepreneurs in densely populated urban areas may require tools that emphasize competitiveness and customer management, while those in rural settings may benefit more from inventory tracking, supplier communication, or mobile-first solutions compatible with intermittent connectivity. Adapting system functionality to these contextual constraints can significantly improve adoption rates and long-term impact.

Overall, the results suggest that effective technological intervention in the micro-enterprise sector requires not only robust system architecture but also an understanding of the behavioral and cognitive characteristics of end users. Engineering practice should therefore integrate competency-based user profiling into early design stages, ensuring that digital tools support—not overwhelm—the entrepreneurs they are intended to benefit.

CONCLUSION

This study examined the relationship between entrepreneurial competencies and productive development among micro-entrepreneurs in Ecuador's Zone 5. The findings show a clear and consistent competency pattern: individuals tend to exhibit strong operational and relational skills, while displaying more limited cognitive and planning abilities. These competency profiles are closely associated with productive development, with job performance emerging as the strongest predictor, followed by personal and professional aptitudes. Contextual characteristics—particularly geographic location, business age, and gross revenue—also play a meaningful role in shaping entrepreneurial outcomes. The evidence highlights the need to strengthen micro-entrepreneurs' planning, management, and decision-making skills, as these dimensions are systematically weaker yet essential for long-term business performance. The results also offer practical value for the design of training programs, institutional support mechanisms, and information systems tailored to the behavioural characteristics and operational realities of micro-enterprises.

This study has several limitations that should be considered when interpreting the findings. First, the results rely on self-reported information, which may be affected by subjective perceptions or social desirability bias. Second, the analysis focuses exclusively on Zone 5 of Ecuador, and caution is needed when generalising the findings to other regions with different socioeconomic dynamics. Third, the cross-sectional design does not allow for causal inference. Future research may incorporate longitudinal or experimental approaches and include objective business performance indicators to validate and extend these conclusions.

Overall, the study contributes to a more nuanced understanding of the competency structures that influence productive development among micro-entrepreneurs. By identifying which competencies matter most—and how contextual factors interact with them—the findings offer valuable guidance for policymakers, training institutions, and researchers seeking to strengthen the micro-enterprise sector in Ecuador and similar contexts.

REFERENCES

G. Ibarra, S. Vullings, and F. Burgos, "Panorama digital de las micro, pequeñas y medianas empresas (mipymes) de América Latina 2021," *GLA Consultores*, 2021. [Online]. Available: <https://www.sela.org/media/3223266/panorama-digital-de-las-mipymes-america-latina-2021.pdf>

C. Erdin and G. Ozkaya, "Contribution of small and medium enterprises to economic development and quality of life in Turkey," *Helijon*, vol. 6, no. 2, pp. 1–14, 2020.

N. A. Salas, H. M. Holguín, D. Lucio-Arias, E. C. Sañchez, and N. Villarreal, "Innovation and productivity in small and medium-sized enterprises: evidence from the Colombian manufacturing sector," *Journal of Small Business and Enterprise Development*, vol. 30, no. 5, pp. 1011–1034, 2023. [Online]. Available: <https://doi.org/10.1108/JSBED-12-2022-0502>

D. T. Parra, L. Hernández Talero-Sarmiento, J. D. Ortiz, and C. D. Guerrero, "Technology readiness for IoT adoption in Colombian SMEs," in *2021 16th Iberian Conference on Information Systems and Technologies (CISTI)*, 2021, pp. 1–6.

A. Al-Mamun, S. A. Fazal, and R. Muniady, "Entrepreneurial knowledge, skills, competencies and performance: A study of micro-enterprises in Kelantan, Malaysia," *Asia Pacific Journal of Innovation and Entrepreneurship*, vol. 13, no. 1, pp. 29–48, 2019.

I. Klepic, "The influence of human resources competency management on the business success of small and medium enterprises," *Nas'e Gospodarstvo/Our Economy*, vol. 68, no. 4, pp. 12–27, 2022.

M. C. Campion, D. J. Schepker, M. A. Campion, and J. I. Sanchez, "Competency modeling: A theoretical and empirical examination of the strategy dissemination process," *Human Resource Management*, vol. 59, no. 3, pp. 291–306, 2020.

M. Fernandez-Ronquillo, X. Llinas-Audet, and F. Sabate, “Competency model for microentrepreneurs in depressed environments,” *International Journal of Management and Enterprise Development*, vol. 17, no. 4, pp. 363–387, 2018.

D. C. McClelland, “Characteristics of successful entrepreneurs,” *The Journal of Creative Behavior*, vol. 21, no. 3, pp. 219–233, 1987.

R. Boyatzis, “Competencies in the 21st century,” *Journal of Management Development*, vol. 27, no. 1, pp. 5–12, 2008.

F. T. Garcia, C. S. ten Caten, E. A. Regiani de Campos, A. M. Callegaro, and D. A. de Jesus Pacheco, “Mortality risk factors in micro and small businesses: Systematic literature review and research agenda,” *Sustainability*, vol. 14, no. 5, p. 2725, 2022.

C. Florio and L. Brotto, “Enterprise risk management and resilience in smes during covid-19 pandemic: The case of italian dealerships,” in *Small and Medium-Sized Enterprise (SME) Resilience*, ser. Management for Professionals, S. Durst and T. Henschel, Eds. Cham: Springer, 2024.

P. Kotsios, “Business resilience skills for smes,” *Journal of Innovation and Entrepreneurship*, vol. 12, no. 1, p. 37, 2023.

M. Fugiel Gartner, T. Jung, and A. M. Baluch, “The changing nature of foundation work: Advancing the field by understanding the foundation professional experience,” *Nonprofit and Voluntary Sector Quarterly*, vol. 54, no. 4, pp. 831–855, 2024.

A. A. Khan, A. A. Laghari, P. Li, and et al., “The collaborative role of blockchain, artificial intelligence, and industrial internet of things in digitalization of small and medium-size enterprises,” *Scientific Reports*, vol. 13, p. 1656, 2023. [Online]. Available: <https://doi.org/10.1038/s41598-023-28707-9>

L. D. Mubarik, B. K. Jung, P. Iskamto, and K. N. Sakib, “Entrepreneurial competencies and success of smes in changwon, south korea,” *Journal of Entrepreneurship & Project Management*, vol. 7, no. 8, pp. 1–11, 2023. [Online]. Available: <https://doi.org/10.53819/81018102t5206>

A. di Campli, “The spazialization of debt,” in *Inhabiting Debt: Ecologies of Dependance and Resistance in Latin America*, A. di Campli, Ed. Cham: Springer Nature Switzerland, 2025, pp. 1–43. [Online]. Available: https://doi.org/10.1007/978-3-031-99886-7_1

L. Stott and D. F. Murphy, “A principles-based approach for enabling multi-stakeholder collaboration: Addressing the elusive quest for sustainable development partnership standards,” *Standards*, vol. 5, no. 3, p. 23, 2025. [Online]. Available: <https://doi.org/10.3390/standards5030023>

M. Zastempowski, “Personality profiles and innovation success: insights from micro-entrepreneurial ventures,” *Central European Management Journal*, pp. 1–29, 2025.

P. Bahaw, A. Baboolal, A. J. Mack, and K. Carter-Rogers, “Exposure to entrepreneurship education interventions reveal improvements to vocational entrepreneurial intent: a two-wave longitudinal study,” *Discover Education*, vol. 3, no. 1, p. 145, 2024. [Online]. Available: <https://doi.org/10.1007/s44217-024-00241-4>

D. Gokkaya, M. Karaman, and E. Pürkuloğlu, “Digital hospital evaluation scale: A scale-development research study,” *Health Information Management Journal*, vol. 54, no. 3, 2025. [Online]. Available: <https://doi.org/10.1177/18333583241307979>

H. G. Savas, H. Karadeniz, and S. Cangur, “Psychometric evaluation of the birth participation scale for fathers (bps-f): a methodological study,” *BMC Pregnancy and Childbirth*, vol. 25, p. 277, 2025.

I. Bijaoui, “Generators of people’s economy,” in *Multinational Interest & Development in Africa*. Cham: Palgrave Macmillan, 2017.

J. Calil, G. Fauville, A. C. M. Queiroz, K. L. Leo, A. G. N. Mann, T. Wise-West, P. Salvatore, and J. N. Bailenson, “Using virtual reality in sea level rise planning and community engagement—an overview,” *Water*, vol. 13, no. 9, p. 1142, 2021.

L. Do “irrenba”cher-Ulrich, S. Dilhuit, and F. Perels, “Investigating the relationship between self-regulated learning, metacognition, and executive functions by focusing on academic transition phases: a systematic review,” *Current Psychology*, vol. 43, pp. 16 045–16 072, 2024.

B. Gumel and B. Bardai, “A review of critical success factors influencing the success of smes,” *SEISENSE Business Review*, vol. 3, no. 1, pp. 37–61, 2023.

L. Rashid, “Entrepreneurship education and sustainable development goals: A literature review and a closer look at fragile states and technology-enabled approaches,” *Sustainability*, vol. 11, no. 19, p. 5343, 2019. [Online]. Available: <https://doi.org/10.3390/su11195343>

I. Souto, E. Brito, and A. Pereira, “Self-efficacy, resilience and distress: Challenges in education for sustainable entrepreneurship in a health context,” *Education Sciences*, vol. 12, no. 10, p. 720, 2022. [Online]. Available: <https://doi.org/10.3390/educsci12100720>